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Abstract
A fundamental study on the tensile failure of rock is conducted using the three-dimensional lattice spring model. The model 
covers three aspects: (1) the relationship between the mesoscopic tensile/shear failure and the corresponding macroscopic 
tensile failure; (2) the effects of the size, shape, and location of the initial defect on the macroscopic tensile failure; and (3) 
the effects of the porosity, heterogeneity, crystal structure, mesoscopic constitutive model, and model scale on its macro-
scopic tensile responses. Through investigation, this study reveals that the mesoscopic strength heterogeneity affects the 
macroscopic pre-peak response of rock, and the initial defect could control its macroscopic post-peak response. The post-
peak characteristics of the mesoscopic constitutive model influence both the macroscopic pre-peak and post-peak responses, 
which are scale independent and scale dependent, respectively. Based on these investigations, a parameter-selection method 
for the mesoscopic constitutive model is established to fully utilize the macroscopic tensile experimental data.
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List of Symbols

Roman Alphabet
D(⋅)	� The damage amount of the spring bond
Dn(⋅)	� The damage function of the normal spring
Ds(⋅)	� The damage function of the shear spring
f (⋅)	� A mathematic function for damage description
�n,ij	� The normal interaction forces (vectors)
�s,ij	� The shear interaction forces (vectors)
kn	� The shiftiness of the normal spring
ks	� The shiftiness of the shear spring
l̄	� The mean length of the spring bond in the lattice 

model
l
i
	� The length of the i-th spring bond in the lattice 

model
m	� A shape coefficient of the Weibull distribution
mp	� The particle mass
�	� The initial unit vector of the connected particles
�s	� The direction unit vector of the tangential defor-

mation of the spring bond

�i	� The displacement of particlei
�j	� The displacement of particle j
�n,ij	� The relative normal deformation vector between 

particles
�s,ij	� The relative tangential deformation vector 

between particles
𝐮̇	� The particle velocity
un	� The normal deformations of the spring
u∗
n
	� The maximum tensile deformation of the spring

us	� The tangential deformations of the spring
||us||	� The absolute value of the shear deformation
u∗
s
	� The maximum shear deformation of the spring

u∗	� The ultimate deformation
u	� The current deformation
�	� The Poisson’s ratio
V 	� The represented macroscopic volume of the com-

putational model
x	� The non-dimensional spring deformation
xi	� The initial coordinate of particle i
yi	� The initial coordinate of particle i
zi	� The initial coordinate of particle i
xj	� The initial coordinate of particle j
yj	� The initial coordinate of particle j
zj	� The initial coordinate of particle j
Δt	� The time step
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Greek Symbols
�	� A non-dimensional parameter for the mesoscopic 

constitutive model
�	� A parameter for the mesoscopic constitutive 

model
�	� A random number that satisfies a certain 

distribution
�i	� The random number assigned to particle i
�j	� The random number assigned to particle j
�3D	� The lattice coefficient
[�]bond	� The local strain of a spring bond
𝜎̄t	� The macroscopic tensile strength
�
t
	� The macroscopic tensile strength

�	� A scale increase factor

1  Introduction

Rock failure has been an area of active research for scien-
tists for centuries, e.g., the classical hypotheses, including 
Coulomb’s shear failure mechanism and Archimedes’ ten-
sile failure mechanism (Yu 2004; Meakin 1991). In recent 
years, many researchers have tended to believe that the 
macroscopic compression/shear failure of rock should be 
due to its tensile failure at a certain scale (Tang et al. 2005; 
Potyondy and Cundall 2004). In fact, the tensile failure of 
rock is crucial to many engineering practices. For example, 
catastrophic failures and instability in most rock engineer-
ing projects are usually caused by the tensile failure of rock, 
e.g., roof falls and rock bursts of underground caverns in 
hydraulic engineering. Moreover, the hydraulic fracturing 
technique that helps to extract underground resources out 
of ground mainly involves the tensile failure of rock as well. 
Researchers have conducted many experimental tests to 
investigate the mechanical responses of different rocks under 
tensile loading; such tests include direct tensile tests (Okubo 
and Fukui 1996) and indirect tensile tests (Li and Wong 
2013). These works focus on the effect of various factors 
(e.g., the temperature and moisture content) on the uniaxial 
tensile strength of rock (Heuze 1983). The experimental 
results of Okubo and Fukui (1996) (see Fig. 1) show that 
there is a distinct post-peak response for the tensile failure 
of rock. Moreover, the post-peak behaviour of a material is 
important for energy consumption. For example, researchers 
in materials science have made super composites by adding 
glass fibres to composites to improve the post-peak prop-
erties (Hofmann et al. 2008). This concept has also been 
adopted in the field of rock engineering, e.g., researchers 
have modified the post-peak response of rock by adding rock 
bolts to enhance its energy absorption to prevent rock bursts 
(He and Zhao 2013).

In plasticity, the tensile response of rock (see Fig. 1) 
can be well-described using a model that includes strain 

hardening and strain softening. It can be easily described by 
a damage model, e.g., the damage coefficient can be directly 
obtained from the experimental curve. However, tensile fail-
ure is usually a localized failure (Barnhoorn et al. 2005) 
rather than a diffused failure. Because the deformation is 
concentrated in a narrow region and continuum mechan-
ics might no longer be valid (Perić et al. 2014), caution 
must be taken when the damage and plastic model are used 
to describe the tensile failure of rock. Other concerns are 
the type of useful information that can be obtained from 
the experimental data of the tensile failure of rock and the 
method used to obtain it. In recent years, the mesoscopic 
numerical simulation has shown promise for use in fur-
ther investigation and utilization of the experimental data 
of the tensile failure of rock (Wu et al. 2016; Yang 2015; 
Wang et al. 2016). For example, Wu et al. (2016) adopted 
the numerical manifold method (NMM) in conjunction with 
the cohesive zone model (CZM) to study rock failure and 
found that rock failure is related to the ratio between the 
normal stiffness and the shear stiffness. Yang et al. (2015) 
used the adhesive particle discrete element model (DEM) 
to analyse the crack initiation, propagation and convergence 
of the initial fractured red sandstone and concluded that the 
rock strength and elastic modulus would first increase and 
then decrease with the change in the initial crack angle. 
Wang et al. (2016) adopted the three-dimensional finite ele-
ment model (FEM) combined with a mesoscopic stochastic 
damage model to study the effects of non-uniformity and 
other factors on the macroscopic tensile and acoustic emis-
sion properties. However, most previous works only focused 
on the influence of certain factors on the tensile failure 
responses of rock and did not explore the integration effect 
of the mesoscopic constitutive model, material heterogene-
ity, initial defect and model scale on the tensile failure of 
rock. In this work, this question will be investigated using 
the distinct lattice spring model (DLSM).

Fig. 1   Stress–strain curves of different rocks under the uniaxial direct 
tensile loading (experimental data from Okubo and Fukui 1996)
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The lattice spring model (LSM) has shown great poten-
tial in the study of the failure and fracturing of materials 
(Hrennikoff 1941; Zhao 2017; Zhao et al. 2011). The main 
attractive point is that this type of method is able to pro-
vide insight into the macroscopic phenomena (the scale of 
specimen) through a physical-based simulation. For exam-
ple, Zhao et al. (2014) studied the strain rate dependent of 
Sydney sandstone with the lattice spring model and found 
that the meso-structure (the scale of rock grain and pore) of 
rock could reproduce a strain rate effect of its dynamic ten-
sile strength. The dynamic fracture energy increase mecha-
nism of self-similar cracks with the crack length increasing 
has been successfully investigated using the lattice spring 
model. Using only Newton’s second law and Hooke’s law, 
the numerical simulation results reproduced the same obser-
vation with the experimental work and theoretical analy-
sis. From the details of the energy distribution analysis, it 
is concluded that the redistribution of deformation energy 
derived from the similar crack propagation is an internal 
reason for the dynamic fracture energy increase (Zhao and 
Xia 2018). In this work, the DLSM is adopted to study the 
tensile failure of rock. First, the relationship between the 
dominant mesoscopic failure of rock, e.g., tensile or shear 
failure, along with its macroscopic tensile failure is stud-
ied. Second, the effects of mesoscopic geometries, such as 
the porosity, heterogeneity, and porous shape, on the tensile 
failure of rock are investigated. Third, the effects of macro-
scopic initial cracks/deflects are explored. Fourth, the influ-
ence of the mesoscopic constitutive relationship developed 
in this work and the model scale on the tensile failure of rock 
are studied. Finally, the method of utilizing tensile failure 
results of rock for parameters’ selection of the mesoscopic 
constitutive model is established and verified against the 
available experimental results.

2 � The Method

In the DLSM, as shown in Fig. 2, the rock is dispersed into 
a number of discrete particles linked by springs. The non-
uniformity of rock is characterized by a texture-mapping 
approach, that is, by assigning different material properties 
to each particle to respond to the material heterogeneity 
(see Fig. 2b). Two particles are connected by a spring bond, 
which is comprised of a normal spring and a shear spring 
(see Fig. 2c). Different from the classical LSM, the DLSM 
adopts a multi-body shear spring to solve the Poisson’s ratio 
limitation. The multi-body shear spring is realized by the 
shear deformation evaluation from the local strain of the 
particle cloud, which is formed by particles and their sur-
rounding neighbours (see Fig. 2d).

In the DLSM, the rock failure is manifested as the break-
ing of a series of spring bonds. In this work, the mesoscopic 

damage model is further used to build up the constitutive 
model of the DLSM. The inter-particle interaction forces of 
the normal and shear springs are expressed as:

where �n,ij and �s,ij are the normal and shear interaction 
forces (vectors) between particles, respectively, �n,ij and �s,ij 
are the relative deformation vectors between particles, un 
and us are the normal and tangential deformations of the 
spring, respectively, knand ks are the shiftiness of the nor-
mal and shear spring, respectively, and D

(
un, us

)
 is the dam-

age amount of the spring bond determined by the current 
deformation and its initial value is zero (refers to the intact 
spring).

Assume the normal spring satisfies the following damage 
function:

where u∗
n
 is the maximum tensile deformation of the spring 

and u∗
n
 is a dimensionless parameter to define the linear 

(1)�n,ij =
(
1 − D

(
un, us

))
kn�n,ij

(2)�s,ij =
(
1 − D

(
un, us

))
ks�s,ij

(3)Dn

�
un
�
=

⎧
⎪⎨⎪⎩

0 , un < 𝛼u∗
n

f
�

un

u∗
n

�
, un < u∗

n

1 , un ≥ u∗
n

Fig. 2   Basic principles of the DLSM: a computational model char-
acterization; b lattice spring structure; c normal and shear springs; d 
particle cloud for local strain calculation
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elastic limit of the spring. The tensile parameter can be 
determined from a calibration process, which is to simu-
late the uniaxial tensile test and compare its result with the 
experimental result. The u∗

n
 is taken as the value when the 

difference between numerical and physical results is the 
minimum. When the elongation of the normal spring is 
greater than u∗

n
 , the spring is completely broken, that is, the 

amount of damage is set to 1. When the normal deformation 
is less than �u∗

n
 , the spring is in the elastic state. The damage 

in other ranges are determined by a damage function f (⋅) . A 
similar model for the shear spring is introduced as:

where ||us|| is the absolute value of the shear deformation, and 
u∗
s
 is the maximum shear deformation of the spring. For the 

shear deformation, there is no further distinction between the 
positive and negative signs during the calculation. However, 
for the normal deformation, the tension is defined as positive 
and the compression is defined as negative. In this work, the 
damage of the normal spring caused by compression is not 
considered. Under a given deformation state, the damage 
value of the spring bond between two particles can be given 
through the following formula:

when the cyclic loading/unloading is taken into account, the 
damage value of the bond is taken as the maximum historical 
damage value.

Through development of different damage functions, 
the DLSM can obtain different mesoscopic constitutive 
models. For example, according to the linear softening 
constitutive model, which is commonly used in the cohe-
sive zone models (CZM) (e.g., Zhao and Xia 2018; Cama-
cho and Ortiz 1996), the following damage function is 
given as:

where x corresponds to the non-dimensional spring defor-
mation x = u∕u∗ ( u refers to the current deformation, and u∗ 
refers to the ultimate deformation). This constitutive model 
corresponds to the damage function and is shown in Fig. 3. 
Note that the ratio between the post-peak region to the pre-
peak region can be adjusted through the non-dimensional 
parameter � . When � is close to 1, the constitutive model 
turns into the original elastic–brittle constitutive model. The 
lower the � value is, the greater the post-peak region of the 
constitutive model and the closer the mesoscopic mechanical 
response to ductile failure.

(4)Ds

�
us
�
=

⎧
⎪⎨⎪⎩

0 , ��us�� < 𝛼u∗
s

f
�

us

u∗
s

�
, ��us�� < u∗

s

1 , ��us�� ≥ 𝛼u∗
s

(5)D
(
un, us

)
= max

(
Dn

(
un
)
,Ds

(
us
))
,

(6)f (x) = 1 −
(1 − x)�

x(1 − �)
,

Referring to the polynomial CZM model (Tvergaard 
1990), the following polynomial damage function is pro-
posed as:

This constitutive model is similar to the bilinear constitu-
tive model. However, its post-peak region has a non-linear 
and upward convex characteristic (see Fig. 3).

According to the exponential form of the CZM model (Xu 
and Needleman 1994), the following exponential damage 
function is developed as:

where � is a dimensionless parameter to control the shape of 
the constitutive model. Its constitutive curve has a concave 
post-peak region (see Fig. 3). When � is higher, the post-
peak region will be truncated; when � is lower, the whole 
region will show the exponential curve post-failure, primar-
ily with only a very short and steep linear curve for the pre-
failure. The concavity of the specific curve can be adjusted 
by assigning different � values. When both the normal and 
shear springs are considered, the corresponding constitutive 
model for each spring bond can be represented by a three-
dimensional surface (see Fig. 4). As an example, Fig. 4a 
shows the normal and shear spring constitutive model for the 
polynomial damage function, in which both the normal and 
shear damage are taken into account. When only the normal 
spring damage is considered, the corresponding constitutive 
model is shown in Fig. 4b. The coupling between the shear 
and normal deformations can break the shear spring as well. 
Figure 4c shows the normal and shear constitutive models, 
in which only the shear spring failure is considered.

(7)f (x) = 1 −

(
1 −

(
x − �

1 − �

)2
)(

�

x

)
.

(8)f (x) = 1 −
(
�

x

)
e

(
−

x−�

�−�∕ 2

)
.

Fig. 3   Three mesoscopic constitutive models developed using differ-
ent damage functions
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The deformation of the normal spring in the DLSM is 
obtained from displacements of two particles:

where �i and �j are the displacements of two particles. � is 
the initial unit vector of the connected particles, which is 
obtained from initial positions of particles:

(9)un =
(
�j − �i

)
⋅ �,

(10)

� =

⎛
⎜⎜⎜⎝

xj − xi��
xj − xi

�2
+
�
yj − yi

�2
+
�
zj − zi

�2 ,
yj − yi��

xj − xi
�2

+
�
yj − yi

�2
+
�
zj − zi

�2 ,
zj − zi��

xj − xi
�2

+
�
yj − yi

�2
+
�
zj − zi

�2

⎞
⎟⎟⎟⎠
,

where xi, yi, zi and xj, yj, zj are the initial coordinates of the 
two particles.

The shear deformation between particles is obtained 
from the localized strain of two particles and is given as 
follows:

The direction of the tangential deformation is given as 
follows:

Under the given deformation, the interaction force 
between particles can be calculated through the consti-
tutive function. Next, the particle force at the current 
time can be obtained through a summarization operation. 
Finally, the particle velocity can be updated based on 
Newton’s second law:

where mp is the particle mass, and Δt is the time step. Those 
spring parameters kn and ks are obtained based on the input 
macroscopic elastic constants and the lattice’s topological 
information:

where E is the elastic modulus, � is Poisson’s ratio, and �3D 
is the lattice coefficient that can be calculated by the follow-
ing formula:

where l
i
 is the length of the spring bond in the lattice model 

and V  is the represented macroscopic volume of the com-
putational model.

(11)us =
‖‖‖[�]bond ⋅ �l −

((
[�]bond ⋅ �l

)
⋅ �

)
�
‖‖‖.

(12)�s =
[�]bond ⋅ �l −

((
[�]bond ⋅ �l

)
⋅ �

)
�

‖‖‖[�]bond ⋅ �l −
((
[�]bond ⋅ �l

)
⋅ �

)
�
‖‖‖
.

(13)𝐮̇
(t+Δ∕ 2)

i
= 𝐮̇

(t−Δ∕ 2)

i
+

∑
𝐅
(t)

j

mp

Δt,

(14)kn =
3E

2�3D(1 − 2�)
,

(15)ks =
3(1 − 4�)E

2�3D(1 + �)(1 − 2�)
,

(16)�3D =

∑
l2
i

V
,

Fig. 4   3D surface of the constitutive model of normal and shear 
springs: a consider both normal and shear failures; b only consider 
the normal spring failure; c only consider the shear spring failure
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3 � Numerical Simulation

In this work, the displacement refers to the deformation of 
the specimen or spring bond. The strain refers to the engi-
neering strain of the specimen.

3.1 � Effect of the Mesoscopic Shear Failure

Under the uniaxial tension loading, the damage induced by 
both the shear and normal deformations could occur. The 
normal damage is supposed to be the dominant influence 
factor. However, the role of mesoscopic shear damage is still 
unclear. For example, the issue of whether pure shear dam-
age could reproduce the macroscopic tensile failure and the 
corresponding macroscopic stress–strain relationship remain 
unclear. In this section, this issue will be addressed through 
a numerical uniaxial tensile test shown in Fig. 5.

In this test, the length of the specimen is 280 mm , the 
width is 75 mm , the thickness is 25 mm , the particle size 
is 1 mm , and the lattice configuration is the Cubic II con-
figuration (see Fig. 5). There are 525,000 particles in the 
computational model. The elastic modulus of the speci-
men is 46.2 GPa , Poisson’s ratio is 0.15, and the density is 
2450 kg/m3 . A velocity loading is applied to both the top and 
bottom of the specimen to mimic the actual uniaxial tensile 
test. Here, the brittle constitutive model is adopted for the 
shear spring only, that is, the � parameter of the bilinear 
constitutive model is set to 1, in which the normal failure 
parameter u∗

n
 is set to 1 mm , and the shear failure parameter 

is set to 1.39 × 10−4 mm.
The numerical specimen will only involve the spring 

bond failure, which is induced by the shear deformation 
during the loading process. The progressive failure of the 

specimen during the test process is shown in Fig. 6a, in 
which red particles indicate that at least one of the linking 
springs of the particle has been broken, i.e., the damage 
value of the spring bond is 1. The specimen is first cracked 
at the loading end, and then this crack gradually expands 
from the end to the centre. During the damage propagation, 
due to the influence of the digital truncation error, the fron-
tal surface of the damage is not symmetrical. Finally, the 
entire specimen reaches a complete failure state. However, 
from the stress strain curve in Fig. 6b, the specimen can 
still carry load, even if all particles are marked as broken. 
The reason for this result is that those springs that are only 
subjected to the tensile deformation remain undamaged, 
and the specimen does not lose its ability to continue to 
carry further tension loading. As shown in Fig. 6b, after 
the first peak has passed, the specimen enters a platform 
region, which corresponds to the expansion phase of the 
failure zone, and then the specimen enters the second load-
ing phase. From this example, it can be concluded that the 
dominant mesoscopic controller of the uniaxial tensile fail-
ure is the failure of the normal spring rather than the shear 

Fig. 5   The computational model settings and corresponding bound-
ary conditions for the uniaxial tensile test

Fig. 6   Numerical simulation results with only considering the shear 
failure: a failure process; b displacement stress curve
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spring. Therefore, this work will only focus on the influence 
of the normal spring.

3.2 � Effect of the Loading Velocity

As an explicit numerical method, the DLSM adopts the 
minuscule time step to guarantee numerical stability; such 
a time step can result in a very long computational time of 
the quasi–static simulation. In the actual simulation, a higher 
loading velocity is used. Therefore, it is necessary to study 
the convergence of the computational results under differ-
ent loading velocities. In this section, the computational 
model in Fig. 5 is further used to investigate the influence 
of the loading velocity. The same material parameters are 
adopted, except that the limit deformation u∗

n
 of the normal 

spring is set to 1.73 × 10−4 mm and the shear failure defor-
mation is set to 1 mm . Thus, only the normal spring failure 
is considered.

Figure 7 shows the numerical simulation results at differ-
ent loading velocities. At the low loading velocity, the speci-
men damage occurs at two ends. It is known that the velocity 
boundary condition would result in the applied surface to 

have zero deflection during the loading process. Therefore, 
it is a kind of rigid boundary condition and leads to a certain 
amount of stress concentration at the ends. The stress wave 
inside the specimen significantly fluctuates at high loading 
velocities; such a fluctuating stress wave becomes the domi-
nant cause of the damage of the specimen, rather than the 
stress concentration. Therefore, when the loading velocity is 
high, multiple forms of damage will occur inside the speci-
men. This phenomenon can be further checked from the dis-
placement stress curves of the specimen at different loading 
velocities. The loading curve exhibits a certain fluctuation 
characteristic at the high loading velocity.

Note that a simple elasto-brittle constitutive relationship 
is used in this example. According to the limit deformation 
of the normal spring, the macroscopic tensile strength of this 
example can be predicted by the following formula:

where l̄ is the mean length of the lattice spring and is set 
to 1 mm in this work. By observing the curves in Fig. 7b, it 
can be concluded that the macroscopic tensile strengths of 
the specimen at different loading velocities are all close to 
8 MPa . This indicates that the damage of the specimen at 
the ends does not affect its macroscopic tensile strength. In 
the following simulations, 2 mm/s is set as the subsequent 
quasi–static loading velocity. The other conclusion in this 
section is that, when the mesoscopic constitutive model 
property is elastic–brittle, the corresponding macroscopic 
tensile response is elastic–brittle as well. It appears that 
there is no information lost between the macroscopic and 
mesoscopic constitutive reaction for the tension failure of 
the specimen. However, this conclusion is only condition-
ally correct, i.e., the brittle mesoscopic model will result in a 
brittle macroscopic response, whereas a macroscopic brittle 
response is not definitely induced from a mesoscopic brittle 
model. In the following sections, a deep investigation will 
be conducted.

3.3 � Effect of the Non‑uniformity

In this section, the influence of the non-uniformity of rock 
on the uniaxial tensile failure is considered. As shown in 
Fig. 8, three methods are used to consider the non-uniform-
ity of rock. The first method is to construct a porous model 
by randomly removing a certain percentage of particles. 
Four models with porosities of 5%, 10%, 15%, and 20% are, 
respectively, generated. The second method is to construct a 
computational model with the higher porosity by randomly 
removing particles in a sphere, as shown in Fig. 8b. This 
model can correspond to sandstones and basalts with par-
ticularly high porosities. The third method is to set different 

(21)𝜎̄
t
= E

u∗
n

l̄
= 8 MPa,

Fig. 7   Simulation results at different loading velocities: a failure pat-
terns; b displacement stress curves
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strength reduction parameters for the spring bonds of the 
computational model and is realized through the following 
formula:

(22)u∗
n,ij

=
(
�i + �j

)
u∗
n
,

where � is a random number that satisfies a certain distri-
bution. A single-parameter Weibull distribution function is 
used (the scale parameter is taken as 1):

where m is a shape coefficient of the Weibull distribution, 
which could control the homogeneity of the specimen. 
Figure 8c shows the non-uniform models of the specimen 
using this approach. The colour of the particle represents 
the random number � corresponding to each particle. The 
greater the m value is, the more homogenous or uniform the 
specimen. This impression can be intuitively drawn from the 
colour distribution in the figure as well (see Fig. 8c). Other 
material parameters and boundary conditions are consistent 
with the computational model used in the previous sections.

Figure 9 shows the uniaxial tensile failures and stress–dis-
placement curves of the computational models with random 
porosities using the first non-uniform model generation 
method. Figure 9a shows the failure patterns under differ-
ent porosities. When the porosity is 5%, the tensile failure 
occurs at the lower end of the specimen, which is closer to 
the failure pattern in the actual experiment than the one in 
the pure homogenous model (see Fig. 7a); when the porosity 

(23)f (�) = m�m−1e−�
m

Fig. 8   Computational models with considering the non-uniformity: a 
the model with the porosity generated by random particle removal; 
b the model with different porosities generated by spherical pores; 
c the computational model with different m parameters (the strength 
parameter obeys the Weibull distribution, the higher the m value, the 
more uniform is the model)

Fig. 9   Numerical simulation results of the DLSM with different ran-
dom porosities: a failure patterns; b displacement stress curves
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is 10%, the fracture exists at the upper end of the speci-
men, and a finger-like crack is exhibited; when the porosity 
is 15%, the fracture exists at the bottom of the specimen; 
finally, when the porosity is 20%, the fracture is exhibited at 
an intermediate position. Compared to the model with the 
lower porosity, when the porosity is 20%, the failure pattern 
consists of one main crack and two subcracks. Specimens 
with different porosities have different failure patterns. The 
reason for this is that the failure patterns are generated by 
the random removal of particles in the computational model, 
macroscopically reproducing different failure patterns.

Figure  9b shows the stress–displacement curves for 
each numerical specimen. The overall macroscopic elastic 
modulus decreases as the porosity increases, and the cor-
responding tensile strength decreases. For example, when 
the porosity is 5%, compared to the intact specimen, the 
strength is reduced approximately 3.5 MPa ; when the poros-
ity increases from 5 to 10%, there is a strength reduction of 
only 1 MPa . Therefore, the relationship between the porosity 
and macroscopic tensile strength is non-linear, especially 
at the beginning of the simulation. It is also concluded that 
the most effective method to make a stronger material is to 
reduce its voids (pores) to a certain small degree.

Figure 10 shows the uniaxial tensile failures as well 
as stress and displacement curves for the specimens with 
spherical porosities. Compared with the failure patterns of 
specimens generated by the first method, these specimens 
have fewer cracks. The red colour indicates that particles 
are broken and currently in the tension state, and the green 
colour indicates that particles are broken and currently in 
the compression state. The fracture pattern is close to the 
conventional experimental results of the uniaxial tensile tests 
of rock.

Figure 10b shows the corresponding stress and displace-
ment curves. As the porosity increases, the corresponding 
macro-elastic modulus and strength will decrease. The 
magnitude of the change in the tensile strength is similar to 
these models generated by the first method (see Fig. 8b). The 
predicted macroscopic stress–displacement curves also have 
brittle characteristics, showing that random pores would not 
apparently affect the macroscopic tensile characteristic of 
rock.

Figure 11 shows the results taking into account the non-
uniformity of the strength of the spring bond through the 
Weibull distribution. When m is equal to 16, the correspond-
ing damage pattern of the specimen is finger-like, and the 
damage zone is at the bottom end of the specimen. This 
result is close to the one in the model with the low porosity 
(see Fig. 9a). When the value of m decreases, it will be closer 
to the single fracture failure of the specimen, and when the 
m value is equal to 2, the cracks will appear in two different 
parts of the specimen. From the stress–displacement curves, 
it is concluded that the corresponding tensile strength will 

increase with the increase in m value (homogeneity). Com-
pared to the one in the random pore model, the correspond-
ing elastic modulus does not change. The corresponding 
stress–displacement curves have a stronger non-linearity at 
the peak of the strength. Because the adopted spring model 
is brittle and there is a macroscopic non-linearity in the 
reproduced macroscopic response, it is indicated that the 
geometrical non-uniformity might result in the non-linearity 
of the macroscopic pre-failure stage of the tensile response 
of rock.

3.4 � Effect of the Prefabricated Defect

Rock has a variety of complex internal defects and micro-
cracks. In this section, the effect of these geometries on 
the tensile failure of rock will be investigated. As shown 
in Fig. 12, the specimen is prefabricated with two initial 
cracks. Different geometric structures are represented by 
setting different crack lengths. These prefabricated cracks 
are generated by removing particles from a given narrow 
area. The specific geometric parameters of each crack are 

Fig. 10   Numerical simulation results of the DLSM with different 
porosities generated by spherical pores: a failure patterns; b displace-
ment stress curves
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given in Fig. 12, and NL represents the initial crack length. 
The boundary conditions, material parameters, and loading 
rates of the specimen are the same with those in the previous 
sections. The corresponding numerical results are shown in 

Fig. 13. It is shown that the failure patterns of these speci-
mens all expand along the prefabricated cracks. When NL 
is 15, there is a certain roughness corresponding to its frac-
ture surfaces, and the lengths of its upper and lower fracture 
surfaces are different; this difference is caused by the asym-
metry of the computational model and the digital trunca-
tion error. Figure 13b shows the stress–displacement curves 
of the specimen with different prefabricated cracks. As the 
length of the prefabricated crack increases, the macro-elastic 
modulus and tensile strength of the specimen will decrease, 
and the corresponding tensile strength will decrease as well.

Compared to the previous examples, the macroscopic 
response of this model shows obvious post-peak character-
istics. Note that this model only considers the mesoscopic 
elasto-brittle constitutive structure, and the reproduced mac-
roscopic response has an apparent post-peak portion. It is 
concluded that the prefabricated crack can lead to the post-
peak tensile behaviour of rock, which might be the source 
of post-peak responses of some rock. However, it is difficult 
to represent the post-peak tensile behaviour by means of the 
prefabricated geometry in the actual simulation. For exam-
ple, the quantitative control of the post-peak response (e.g., 

Fig. 11   Numerical simulation results of the DLSM with different m 
parameters of which the strength parameter of the spring bond obeys 
the Weibull distribution: a failure patterns; b displacement stress 
curves

Fig. 12   Computational models with different prefabricated crack pat-
terns

Fig. 13   Numerical simulation results of the DLSM with different 
prefabricated crack patterns: a failure patterns; b displacement stress 
curves
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the slope) is difficult to be implemented. In addition, the 
geometric approach requires a large number of numerical 
units to be used, which further handicap its general applica-
tion. Using the non-linear mesoscopic constitutive model is 
a viable solution. Adjusting parameters to control the tensile 
responses of rock has the advantages in terms of high com-
putational efficiencies and ease of operations.

3.5 � Effect of the Mesoscopic Constitutive Model

In this section, the influence of different constitutive models, 
e.g., the bilinear constitutive model, polynomial constitutive 
model, and exponential constitutive model, on the tensile 
failure characteristics of rock are investigated. The scale 
effect is first studied through the numerical simulation of 
uniaxial tensile tests with computational models of various 
lengths and is shown in Fig. 14.

The first computational model only considers two par-
ticles. The second model is a Cubic II unit, which is com-
prised of four particles. The other models are those that the 
lengths of the specimen are continuously increased by a mul-
tiple factor of 2 in the loading direction. This exponential 
increase is used to measure the changes in scale. The bound-
ary conditions here are achieved by applying a tensile load-
ing velocity at the top and bottom of the model. The material 
parameters are the same as those in the previous sections. 
The only difference is that the value of � , which corresponds 
to the constitutive model of the material, is set to 0.1.

Because the effect of the specimen scale (length) on the 
shape of the stress displacement curve is our primary con-
cern, the results are normalized to for better comparison. 
The stress is divided by the tensile strength, and the strain 
is divided by the corresponding strain at the corresponding 
tensile peak. Figure 15a shows the corresponding results 
of the bilinear constitutive model. The tensile properties 
of the two-particle model correspond to the bilinear con-
stitutive shape. For the Cubic II model, the corresponding 
tensile curve still has obvious post-peak characteristics. 
When approaching to the ultimate deformation, there are 
some fluctuations that might be caused by the lattice con-
figuration of dialog connections. In addition, the pre-peak 
portion of the stress–displacement curve also shows a dis-
tinct non-linear characteristic. This non-linearity is caused 
by the post-peak portion of the bilinear constitutive model. 
When the length of the computational model is dou-
bled, the post-peak portion will be drastically shortened. 
When the length of the specimen is further increased, the 
response of the model would exhibit obvious brittleness 
characteristics. Note that as the length of the specimen 
increases, the corresponding pre-peak non-linearity does 
not significantly change. Therefore, the change in the scale 
will have a significant effect on the post-peak portion of 
the tensile response of rock and a small effect on its pre-
peak portion.

Figure  15b shows the stress–strain curves at differ-
ent scales of the specimen for the polynomial constitutive 
model. The corresponding Cubic II model maintains the 
post-peak curve characteristics of the polynomial constitu-
tive model. When Lc is 8 mm (8 particles) of the model, the 
corresponding post-peak portion is substantially reduced and 
has a consistent post-peak reduction as the bilinear constitu-
tive model. Figure 15c shows the effect of the exponential 
constitutive model and the model scale on the tensile prop-
erties for � = 0.1, � = 0.2 . Unlike the first two constitutive 
models, the 8-particle length model will not show much 
information on its mesoscopic constitutive model. The effect 
of the polynomial and exponential constitutive models on the 
pre-peak portion of the tensile stress versus displacement 
curve is inconsistent with the bilinear constitutive model. It 
can be concluded from these results that an increase in the 
specimen length (scale) will cause the macroscopic tensile 
response to change from having a clear post-peak portion 
to being brittle-like. Therefore, directly extracting the post-
peak response from the classical uniaxial tensile test with a 
brittle post peak is a difficult task. Nevertheless, the pre-peak 
non-linear response of the uniaxial tensile test might be a 
good source to determine whether a mesoscopic constitu-
tive model with post-peak softening should be used or not.

To further study the influence of specific post-peak 
parameters of the mesoscopic constitutive models on the 
macroscopic tensile responses, a computational model is 

Fig. 14   Uniaxial tensile computational models with different lengths 
(applying the velocity loading at the top and bottom of the specimen)
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built, as shown in Fig. 16. The difference between this model 
and the one shown in Fig. 14 is that the cross-section is 
extended to 10 × 10 particles. The loading conditions and 
material parameters are taken to be the same as those in the 
previous sections.

Figure 17 shows the normalized stress and displacement 
curves of different constitutive models. The macroscopic 
tensile mechanic curves of the bilinear constitutive are 
shown in Fig. 17a, in which the lower the α value is, the 
greater the post-peak portion. For example, � = 0.001 indi-
cates that the ratio of the pre-peak portion to the post-peak 
portion can reach 1000 times. The post-peak portion of 
the constitutive model changes with the change in � . As 

the post-peak portion of the mesoscale model is larger, 
the corresponding macroscopic stress curves have dis-
tinct post-peak portions, as well. However, for the bilinear 
model, a distinct post-peak response can only be obtained 
when the post-peak portion has a 100-fold ratio. Post-peak 
parameters have no significant effect on the non-linearity 
of the pre-peak portion, and a linear constitutive response 
only occurs when the constitutive model has the brittle 
characteristics, i.e., � = 0.0 . Polynomial constitutive mod-
els have similar effect on macroscopic tensile curves as 
well. The only difference is that the effect on the post-peak 
portion at � = 0.01 is equivalent to the bilinear model of 
� = 0.05 . For the exponential constitutive model, when 

Fig. 15   Numerical results with 
considering different meso-
scopic constitutive models and 
lengths of the specimen: a 
bilinear constitutive model; b 
polynomial constitutive model; 
c exponential constitutive model
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� is low, the corresponding characteristics are related to 
only � . For the exponential constitutive model, � is fixed 
to 0.001, the corresponding macroscopic tensile curves 
for different values of � are shown in Fig. 17c. With the 
increase in � , the post-peak portion of the macroscopic 
tensile response will be more apparent.

Different post-peak parameters will affect not only the 
shape of the tensile curve but also the tensile strength. Fig-
ure 18 shows the effect of different constitutive parameters 
on the tensile strength. Figure 18a shows the relationship 
between the post-peak parameter � and the tensile strength 
for bilinear and polynomial constitutive models. The ten-
sile strength here corresponds to the ratio of the tensile 
strength when the ultimate tensile deformation of the cor-
responding brittle constitutive model is �u∗

n
 and represents 

the increase in the macroscopic tensile strength caused 
by the post-peak portion of the mesoscopic constitutive 
model. From Fig. 18a, it can be concluded that, when the 
mesoscopic post-peak portion increases, the correspond-
ing macro-tensile strength will increase. However, this 
increase has a certain upper limit of approximately 40%. 
When the post-peak parameters are low, the increase in the 
macroscopic tensile strengths in the post-peak portions of 
the bilinear constitutive and polynomial constitutive mod-
els has a certain difference. The polynomial constitutive 
model has a greater impact on the increase in the strength. 
When the post-peak portion is too large, the effects of 
these two constitutive models converge and become identi-
cal to each other. The response of the corresponding expo-
nential constitutive model to the tensile strength is shown 
in Fig. 18b. With the increase in � , the post-peak portion 

expands and the tensile strength correspondingly increase. 
However, the ultimate increase in the corresponding mac-
roscopic strength is approximately 30%.

The information in Fig. 18 can be used to select param-
eters in the actual numerical simulation of the tensile fail-
ure of rock. The tensile strength reproduced by the non-
linear constitutive model can be estimated by the following 
formula:

where �
t
 is the macroscopic tensile strength, and � is a scale 

increase factor that can be assigned approximately between 
1.3 and 1.5. To verify the above formula, a uniaxial ten-
sile simulation of the model shown in Fig. 5 is performed, 
and the corresponding uniaxial tensile curves are shown in 
Fig. 19. It can be seen that it is possible to reproduce the 
post-peak response similar to the experimental tensile curves 
using different constitutive models. The post-peak behav-
iour can be used to further determine the selection of differ-
ent constitutive models and the � value of the exponential 
constitutive model. The corresponding parameters of these 
three constitutive models are u∗

n
= 0.1 mm and � = 0.001 , 

and the � value of the exponential constitutive model is 0.1. 
The calculated tensile strength of the corresponding three 
constitutive models is 6.7 MPa , and the value obtained by 
Formula (24) is from 6.0 to 6.9 MPa . Therefore, Formula 
(24) is feasible.

4 � Conclusion

The distinct lattice spring model (DLSM) is used in this 
paper to investigate the tensile failure of rock. To study the 
effect of the meso-constitutive structure, three non-linear 
constitutive models are further developed. The effects of 
the geometric heterogeneity of rock, mesoscopic constitutive 
model, and model scale, on the pre-peak and post-peak char-
acteristics of the macroscopic tensile responses of rock are 
fully investigated. To study the geometric heterogeneity of 
rock, numerical tests are conducted by introducing the ran-
dom geometric structures, macroscopic fracture structures, 
and random non-uniformity of the strength parameters.

Through numerical simulation, a few conclusions are 
drawn. First, shear spring failure does not control the mac-
roscopic tensile failure. Therefore, the macroscopic ten-
sile experimental curves rather than the shear ones mainly 
carry the mesoscopic tensile failure information. Second, 
the material non-uniformity in terms of random poros-
ity distribution and random distribution of the strength of 
the material units could reproduce the pre-peak non-lin-
ear responses of rock. It is only possible to reproduce the 

(24)�
t
= �

u∗
n

l
�E,

Fig. 16   The computational model with considering 10 × 10 particle 
cross-section for the uniaxial tensile test
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post-peak response through setting macroscopic defects. 
Finally, this reveals that the nature of the pre-peak and 
post-peak characteristics of the tensile behaviour of rock 
can be reproduced from purely geometric effects using a 
simple brittle constitutive model.

The effect of the mesoscopic constitutive models and 
the scale effect were also considered. The scale affects 
both the post-peak region (make it brittle) and the strength 
(make it stronger). The post-peak non-linearity of the mes-
oscopic constitutive model will influence both the pre-
peak and post-peak responses of rock, although the influ-
ence on the pre-peak portion is independent of the scale. 
However, this type of influence on the post-peak portion 

is scale dependent. An empirical formula considering the 
scale influence and the post-peak parameters of the consti-
tutive model is established and can be used to determine 
the corresponding mesoscopic parameters in modelling the 
tensile failure of rock.

The tensile failure is commonly encountered in most rock 
engineering projects, e.g., rock roof falls and rock bursts of 
underground caverns. The results of this study might provide 
some ideas to model these tensile failure problems in actual 
rock engineering practices more rationally. For example, due 
to the computational limitation, the numerical element size 
in the actual modelling of rock engineering is usually in 
the order of a few meters. Through investigation, this study 

Fig. 17   The relationships 
between constitutive parameters 
and tensile stress–strain curve 
morphologies for different 
constitutive models: a bilinear 
constitutive model; b poly-
nomial constitutive model; c 
exponential constitutive model 
( � = 0.001)
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reveals that a simple brittle constitutive model could be used, 
even if the tensile behaviour of the rock specimen shows 
the obvious post-peak response, the only change is that the 
tensile strength should be set as 1.3–1.5 times as the experi-
mental value.
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