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a b s t r a c t 

With the rapid development of high-performance computing, Lattice Spring Models (LSMs) using a sim- 

ple fracturing law demonstrate many prospects for simulating crack propagation in brittle solids. In this 

paper, a comprehensive study on crack propagation in brittle material is conducted using the distinct 

lattice spring model (DLSM) with high-performance computing and physical tests on crack propagation 

in brittle material from this work and the literature. The relationship between the simple fracturing law 

and the fracture criterion based on linear elastic fracture mechanics is investigated for the first time. The 

work involved includes the correlation between the Stress Intensity Factor (SIF) and spring deformation, 

the influence of the particle size on fracture toughness, and the relationship between the micro-spring 

failure and the critical stress intensity factors. Our results indicate that the simple fracturing law based on 

spring deformation may be easier and more fundamental for understanding crack propagation in brittle 

materials than fracture-toughness-based criteria. The applicability of the simple fracturing law is further 

confirmed from numerical modelling of crack propagation and coalescence problems with complex pre- 

existing cracks. Our results show that models with an appropriate resolution can simulate the crack path 

reasonably. Finally, the advantages of using the simple fracturing law are highlighted through multiple 

dynamic crack propagation and three-dimensional fracturing. 

© 2017 Elsevier Ltd. All rights reserved. 
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ist of abbreviations 

EM boundary element method 

MP bonded particle models 

CNBD cracked chevron notched Brazilian disc 

STBD cracked straight-through Brazilian disc 

DA discontinuous deformation analysis 

EM discrete element method 

LSM distinct lattice spring model 

PFM elastic plastic fracture mechanics 

DM finite difference method 

EM finite element method 

PZ fracture process zone 

CFBD holed-cracked flattened Brazilian disc 

EFM linear elastic fracture mechanics 

SM lattice spring model 

MM numerical manifold method 

FC particle flow code 

MMA polymethyl methacrylate 
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PC Portland Pozzolana cement 

SD relative standard deviation 

BFEM scaled boundary finite element method 

CB semicircular bending 

IF stress intensity factor 

NDB straight-notched disc bending 

. Introduction 

Brittle solids containing cracks are thought to be highly risky

or engineering applications. Cracks accelerate failure and add to

he complexity of failure prediction, thus causing many disasters.

or example, in the case of an eight-story residential building col-

apse in Bangladesh in 2013, it was reported that a crack was found

n the concrete floor before the collapse ( Than, 2013 ). However,

umans make use of the induced crack propagation through rock

ass in underground oil/gas reservoirs to extract resources. No

atter on which aspects, disaster control or resource exploitation,

nderstanding of crack propagation is essential. Therefore, research

n crack propagation in brittle material is in demand. 

Numerical experiments are favourable because they help fore-

ee many results at low cost, thus providing guidance for practice.
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Numerical methods can be broadly grouped into two categories:

continuum-based methods and discontinuum-based methods. The

success of continuum-based methods is attributed to pioneering

works including the proposals of the energy release rate by Griffith

(1921) ; stress intensity factor (SIF) by Irwin (1957) , who set up

the crack propagation criterion in linear elastic fracture mechan-

ics (LEFM); J-integral ( Rice, 1968 ) in elastic plastic fracture me-

chanics (EPFM); and fracture process zone (FPZ) models ( Bazant

and Cedolin, 1979; Hillerborg et al., 1976 ). Popular continuum-

based numerical methods (e.g., the finite element method (FEM),

finite difference method (FDM), boundary element method (BEM),

and numerical manifold method (NMM) often use the SIF as the

most widely accepted criterion, which can be calculated by the

J-integral, the stiffness derivative method ( Parks, 1974 ), or meth-

ods based on nodal displacement near a crack tip ( Fu et al., 2012 ).

However, the calculation of the SIF in the presence of pre-existing

cracks or near boundaries is inaccurate. Moreover, the SIF is diffi-

cult to determine in a non-homogeneous material, although solu-

tions are found in functionally graded materials ( Dolbow and Gosz,

2002; Rao and Rahman, 2003; Song and Paulino, 2006 ). 

Unlike continuum models, discontinuum-based models use a

bottom-up methodology and assemble the solid body with discon-

tinuous elements. Because of that feature, these methods do not

require special treatment for the formulation of elements near the

discontinuities and can simulate complete detachment of material,

which is difficult to obtain in continuum-based models with rock

mass, ice plates, flow of granular materials, etc. ( Lisjak and Gras-

selli, 2014 ). Because the development of high-performance com-

puting alleviates the disadvantage of being computational expen-

sive, discontinuum-based models have become favourable, espe-

cially in working with complex discontinuities and material het-

erogeneity. Compared with the continuum approach, the calcula-

tion of the SIF or energy release rate is not the essential interme-

diate step for simulating crack propagation, and the crack propa-

gates when the strain or stress level excesses the threshold value

between the discrete elements. The straightforward criteria are

successful in simulating crack propagation using the discrete ele-

ment method (DEM) ( Cundall, 1971 ), bonded particle model (BMP)

( Potyondy and Cundall, 2004 ) and discontinuous deformation anal-

ysis (DDA) method ( Shi and Goodman, 1988 ). Lattice spring models

(LSMs), which originated from Hrennikoff (1941) , use natural fail-

ure of the springs between particles as the criterion. The earlier

versions of LSMs (e.g. Beale and Srolovitz, 1988; Donzé and Mag-

nier, 1995; Srolovitz and Beale, 1988 ) has a limitation of a fixed

Poisson’s ratio (i.e., 0.25 for three dimensions and 0.33 for two

dimensions) ( Zhao, 2017; Zhao, 2010 ). Later, the introduction of

the shear spring broke that limitation, but LSMs still cannot rep-

resent the full range of Poisson’s ratio (e.g. upper boundary of

0.25 for plane strain condition and 0.33 for plane stress condi-

tion ( Zhao et al., 2012 )).The distinct lattice spring model (DLSM)

proposed by Zhao et al., (2011) used local strain calculation tech-

nique to consider the rotational effects instead of adding additional

degree of freedom. It utilises the multi-body shear spring, allow-

ing the model to represent diverse Poisson’s ratios without vio-

lating the rotational invariance because the relative shear defor-

mation is calculated from a particle cluster by using a local strain

method rather than the shear displacement of two particles. Com-

pared with conventional DEM, DLSM does not need to determine

the micro-parameters because these parameters are directly de-

rived from the macro-parameters. In addition, DLSM halves the de-

grees of freedom in DEM, thus reducing the computational cost.

Because heterogeneity or high discontinuity in a material will have

a significant influence on the crack trajectory ( Cotterell and Rice,

1980 ), crack propagation by natural breakage of the springs seems

to be more realistic and objective. 
T

DLSM has been successfully used in crack problems (e.g. Gui

nd Zhao, 2015; Jiang et al., 2016 ) . However, the verification of

his method in fracture mechanics is absent, and its capability in

imulating crack propagation is questionable. This paper employs

LSM to investigate crack propagation in brittle material. The sim-

le fracturing criteria based on spring deformation will be critically

ssessed. In addition, the fracture toughness is calculated for dif-

erent particle sizes, and the relationship between critical SIF and

pring failure is investigated. Finally, the validations and applica-

ions of this discrete particle model are briefly illustrated through

uasi-static and dynamic examples. 

The content in the paper is organised as follows: In Section 2 ,

he algorithm of DLSM is briefly outlined. In Section 3 , the rela-

ionship of the simple fracturing law and linear elastic fracture me-

hanics is investigated, including the correlation of spring deforma-

ion and SIF in Section 3.1 , influence of particle size and fracture

oughness in Section 3.2 , and relationship between spring failure

nd critical stress intensity factor in Section 3.3 . In Section 4 , the

alidations and applications to crack propagation and coalescence

re presented through quasi-static and dynamic fracturing with 2D

nd 3D examples. The paper ends with some conclusions and re-

arks. 

. DLSM algorithm 

The distinct lattice spring model (DLSM) was proposed by Zhao

t al., (2011) . In DLSM, the lattice model is formed by linking

he particles whose centre-to-centre distances are smaller than a

hreshold value. Accordingly, the particles with prescribed sizes

re linked by a pair of springs, namely, a normal spring and a

hear spring, in clusters (see Fig. 1 a). The springs have a con-

titutive model as described in Fig. 1 c. Either spring has an ul-

imate displacement ( Un ∗ or Us ∗) within which the springs obey

ooke’s law and beyond which the particles will have only a con-

act bond with zero strength, which has been proved to be realis-

ic in fracture pattern and this treatment is one of the advantages

ver FEM ( Zhao and Khalili, 2012b ). The normal spring was imple-

ented in the classic lattice spring model. The normal unit vector

 = ( n x ,n y ,n z ) T is defined as pointing from particle i to particle j ,

inked by a bond. The normal deformation of the spring is defined

s 

 

n 
i j = 

(
u i j • n 

)
n (1)

here n ij =n j −n i is the relative displacement between two parti-

les. Obeying Hooke’s law, the normal force between the two par-

icles is given as 

 

n 
i j = 

{
k n u 

n 
i j 

for u 

n 
i j 
< Un 

∗

0 (break) else 
(2)

here k n is the stiffness of the normal spring. 

The major distinct feature of DLSM is that a shear spring is in-

roduced to break the limitation in various Poisson’s ratios in clas-

ic lattice spring models ( Zhao et al., 2011 ). The shear spring is

ntroduced to describe the multibody non-central interaction. The

hear spring allows the model to represent diverse Poisson’s ra-

ios without violating the rotational invariance because the relative

hear deformation is calculated from a particle cluster by using a

ocal strain method rather than the shear displacement of the two

articles, which is calculated as ( Zhao et al., 2011 ) 

ˆ  s i j = [ ε ] bond n − ( ( [ ε ] bond n ) • n ) n (3)

here[ ε ] bond is the local strain of the connecting bond and is eval-

ated as the average of the linked particle strains [ ε ] i and [ ε ] j ,
hich are evaluated by a least square method ( Zhao et al., 2011 ).

he shear force between the two particles is given as 
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Fig. 1. (a) Schematic illustration of the normal spring and shear spring in DLSM. (b) The calculation cycle in DLSM. (c) The constitutive model of normal and shear springs. 
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s 
i j = 

{
k s ̂  u 

s 
i j 

for ˆ u 

s 
i j 
< Us ∗

0 (break) else 
(4) 

here k s is the stiffness of the shear spring. The Eqs. (2) and

 4 ) make the fracture criterion in DLSM also as depicted in Fig.

 (c), and the ultimate displacements are calibrated through ex-

eriments. It is noted that they exist or disappear simultaneously

n pairs (i.e. either spring’s breakage will break the other spring).

n DLSM, material is discretized into a group of particles linked

hrough springs. The crack propagation, fragmentation and failure

f solids are represented as the progressive failure of these springs.

herefore, in DLSM, the crack initiation in the model will be the

rst break of any spring, and crack extension is represented as a

eries of micro failure events (breakage of springs). 

The relationships between micro-spring parameters ( k n and k s )

nd macro-material properties (E and υ) are derived by Cauchy–
orn rules and the hyperelasticity theory. The equations ( Zhao et

l., 2011 ) for k n and k s in the elastic domain are 

 n = 

3 E 

α3 D (1 − 2 υ) 
(5) 

 s = 

3(1 − 4 υ) E 

α3 D (1 + υ)(1 − 2 υ) 
(6) 

here α3 D is a microstructure geometry coefficient that can be ob-

ained as 

3 D = 

∑ 

l i 
2 

V m 

(7) 

here l i is the original length of the i th spring, and V m 

is the vol-

me of the represented geometry model. 

The motion equation ( Zhao et al., 2011 ) of the lattice system,

hich consists of mass particles and springs, can be represented
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Fig. 2. (a) Loading schematics for evaluating a displacement extrapolation method. (b) ANSYS model with singular elements at the tip and with regular meshes. 
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[ K ] u + [ C ] ̇ u + [ M ] ̈u = F (t) (8)

where u represents the vector of particle displacement, [ K ]is the

stiffness matrix, [ M ]is the diagonal mass matrix, [ C ]is the damping

matrix, F ( t )is the vector of external force, ˙ u is the particle veloc-

ity, and ü is the particle acceleration. In DLSM, the explicit central

finite difference method is used to solve Eq. (8) . 

The calculation cycle is shown in Fig. 1 b. The relative particle

displacement can detect any broken bonds and update the forces

acting on the particles. The acting forces promote the movement

of particles. With the calculated particle velocity, the relative par-

ticle displacement is recalculated for the second loop. The particle

velocity is obtained as 

˙ u 

(t+ �t / 2 ) = ˙ u 

(t−�t / 2 ) + ü �t (9)

where �t is the time step, ˙ u 

(t+ �t / 2 ) is the particle velocity at

 + �t / 2 , ˙ u 

(t−�t / 2 ) is the particle velocity at t − �t / 2 , and ü is the

acceleration of the particle, which is calculated from Newton’s sec-

ond law as 

ü = 

∑ 

F (t) 

m p 
(10)

where m p is the particle mass, and 

∑ 

F (t) is the sum of con-

tact forces acting on the particle including applied external forces.

Eventually, the new displacement of the particle is calculated as 

u 

(t +�t ) = u 

(t) + ˙ u 

(t+ �t / 2 ) �t (11)

where u 

(t +�t ) is the displacement at the next time step, and u 

(t) 

is the displacement at t . 

For static problems, mechanical damping ( Zhao et al., 2011 ) is

used, which can be expressed as 

˙ u 

(t+ �t / 2 ) = ˙ u 

(t−�t / 2 ) + 

{ ∑ 

F (t) − χ
∣∣∣∑ 

F (t) 

∣∣∣sgn 

(
˙ u 

(t−�t / 2 ) 
)} 

�t 

m p 

(12)

where χ is the damping constant. 

The advantages of DLSM for crack propagation in brittle mate-

rial are as follows. First, the constitutive model of the microstruc-

ture is easy to implement, so the result from the simulation is easy

to interpret. Moreover, the calibration is simpler because fewer

parameters are required than in other discontinuum-based mod-

els, e.g., particle flow code (PFC). Second, because of its meshless

and rotationally invariant nature, a very complex model with pre-

existing cracks can be built. In other words, there is no limitation
n the geometry of the model. Third, parallelization of DLSM gives

his model high computational performance which is available on

oth central processing unit (CPU) ( Zhao et al., 2013 ) and graphics

rocessing unit (GPU) ( Zhao and Khalili, 2012a ). 

. DLSM for crack propagation 

.1. Correlation of spring deformation to SIF 

DLSM uses a fracture criterion simply based on spring deforma-

ion, so the verification of this criterion is necessary. To illustrate,

 100 mm × 100 mm square model with a central pre-existing line

rack of length 2a is designed in Fig. 2 a. The bottom is fixed in

oth the X and Y directions. Two layers of particles are used along

he thickness, and the model is assumed to be in the plane stress

ondition. Two types of static stress (a normal stress and a shear

tress) are applied to the top surface, and the model adopts me-

hanical damping to achieve quasi-static loading. To evaluate the

tress state of the current fractured model, according to LEFM, the

IF at the crack tips is of greatest interest. The FEM-based simula-

or ANSYS is used as a tool in this study as it can accurately cal-

ulate the SIFs (e.g. by meshing with singular elements near the

rack tip or using J-integral), which provide good references. In

LSM or other meshless models, the displacement extrapolation

ethod ( Chan et al., 1970 ) can be used. The simplest form is lin-

ar extrapolation in which at least two sets of node displacements

re required. To decide which sets to use, two models are meshed

n ANSYS, one with singular elements at the tip and one with

ll equal-sized triangular elements (refer to Fig. 2 b). The model

ith equal-sized elements has the nodes evenly aligned such that

he nodes’ alignment along the crack faces is similar to that in

LSM. The node displacements are recorded to calculate the ap-

arent stress intensity factors ( K 

∗) of mode I and mode II using

qs. (13) and (14) . 

 I ∗ = 

√ 

2 π

r 
× G 

1 + κ
× V (13)

 II ∗ = 

√ 

2 π

r 
× G 

1 + κ
× U (14)

here r is the distance from the crack tip, G is the shear modulus,

= (3 - υ)/(1 + υ) in the plane stress condition, and V and U are

he relative displacements of the corresponding nodes in the nor-

al and shear directions, respectively. Different sets of nodes are

ried for the calculation of K 

∗ to match the results obtained from
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Fig. 3. (a) Loading schematics under pure tension. (b) ANSYS model with singular elements at the tip; DLSM model using the displacement extrapolation method or directly 

using U cod-tip . 
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Fig. 4. Results of the calculated SIF and normal spring deformation between 

the two particles at the crack tip (U cod-tip ). (a) particle size = 1 mm (b) particle 

size = 0.5 mm. 

p  

w  

t  

t  

t  
he model with singular elements. However, too many choices can

e selected for linear extrapolation. For example, in a crack with a

alf crack length of 20 mm with 1 mm mesh size, there are 190

ombinations for different results. We define a ratio of the dis-

ances from crack tip to the farther node and closer node. The

atio cannot be too large because the second (farther) node may

ecome unavailable in the models with few nodes, and cannot be

oo small because the two nodes should represent the whole crack

aces. Therefore, an intermediate ratio of 1.5 is determined. The er-

ors compared to FEM solutions for all possible combinations on

 model with crack length of 40 mm are calculated and plotted in

he Appendix Fig. A1 . The results are based on three resolutions

f the mesh, i.e. 0.5 mm, 0.8 mm and 1 mm. It is noted that the

rst node being the 10th node generate the best results. Therefore,

he two datasets adopted for linear extrapolation are the displace-

ents of the 10th and 15th nodes counting away from the crack

ip along each crack face, as depicted in Fig. 2 b. This method has

lso been verified by rotating the pre-existing crack by different

ngles, and the differences with FEM are less than 5% (refer to the

esults in Table A1 in Appendix). The two point linear extrapola-

ion strategy with Eqs. (13) and (14) is assumed to be applicable in

LSM whose particles along the crack faces are evenly distributed

s well. It needs to be mentioned that the crack propagation is not

ontrolled by SIFs in DLSM, and the purpose of calculating SIFs is

o explore the connection to LEFM and reason why discrete models

such as LSM) are able to be used for crack propagation. 

The validation has been performed in DLSM models with

.5 mm and 1 mm in particle size and with five different pre-

xisting crack lengths (2a = 40 mm, 50 mm, 60 mm, 70 mm and

0 mm) under a pure tensile (mode I) load (refer to Fig. 3 a). The

omparison is made between ANSYS’s results with singular ele-

ents and DLSM’s results with the aforementioned strategy (re-

er to Fig. 3 b). The calculated results indicate that the difference

n K I values is within only 2% (refer to Appendix Table A2 ). This

eans that under the same criterion as the SIF, DLSM can provide

imilar results as LEFM. To illustrate, the calculated SIFs in mode

 ( K I ) are plotted as dimensionless values corresponding to their

aximum values in Fig. 4 . In addition, the normal spring deforma-

ion between the two particles at the crack tip (named U cod-tip ) are

lso recorded and plotted on the same graph. It should be men-

ioned that U cod-tip has a closer match to the trend of K I from the

EM analysis in Fig. 4 , which indicates that this value has a strong

orrelation with the SIF, which is regarded as the most important

arameter in LEFM. Therefore, it is deduced that U cod-tip has the
otential to be used to predict crack failure in DLSM. In other

ords, the spring deformation criterion may replace the conven-

ional criterion from fracture mechanics, which requires calculating

he stress intensity factor. This could be one reason, to some ex-

ent, why discrete particle models could be computationally more



46 C. Jiang et al. / International Journal of Solids and Structures 118–119 (2017) 41–57 

Fig. 5. Mode I crack initiation, propagation and arrest tests.(a) three loading types (b) crack path in different states. 
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efficient than continuum-based models in fracture detection near

crack tips. 

To verify that such a simple criterion can be used in fracture

scenarios for simulating crack initiation, propagation and arrest,

pure tensile stress as remote loading is applied again in the same

model as a dynamic case in which the mechanical damping is re-

moved. To control the total energy in the system, the displacement

control method is used. The displacement control occurs in two

stages. In the first stage, the model is pulled under a remote uni-

form velocity to a displacement of U 

∗, which is just before the ac-

tivation of crack initiation (see Fig. 5 a). In the second stage, there

are three types of loading: ( 1 ) continuing to load with the same

speed, ( 2 ) fixing the top boundary at the same position and ( 3 ) un-

loading with a selected speed. In Fig. 5 b, 7 points are picked, and

their crack states are correspondingly illustrated. In type 1 loading,

the crack propagation continues to transmit after the displacement

of U 

∗. It should be mentioned that a moderate speed is selected to

avoid branching so that the crack propagates in the pure opening

mode throughout the whole process. In loading type 2, it is inter-

esting to note that the crack propagation still continues and runs

through the model rather than stop (see point 4 in Fig. 5 b). This

indicates that there is still high energy remaining in the model al-

though no extra energy is added to the system (i.e., the displace-

ment is kept constant). To remove the redundant energy for fur-
her propagation, negative work is applied to the model by reduc-

ng the displacement to zero in loading type 3, in which the crack

rrest is captured. Comparing point 5 and point 6, it is also noted

hat with increasing unloading rate, the crack is arrested with a

maller crack length, whereas there is still a crack stoppage failure

ith the insufficient unloading rate at point 7. 

The crack criterion in DLSM is simple, but it can successfully

how the ability for simulating crack initiation, propagation and

rrest. Moreover, simple numerically implemented linear loading

nd unloading by remote control has also successfully affirmed the

henomenon that in a material with a pre-existing crack, the un-

table crack may still propagate after the loading is removed or

ven negatively applied, which is an essential understanding for

rack propagation control in certain engineering practice. Because

ailure of brittle material is unstable and crack propagates rapidly

ithout increase in applied stress. In addition to the building col-

apse in Bangladesh in the introduction, another example of the

udden crack failure in on Schenectady T2 tanker in 1943 in which

ne of the reasons is on low temperature that embrittles steels

 The Welding Institute, 2017 ). Our simulation results indicated that

he crack propagation is a progress of energy release and brittle

racture easily causes catastrophic event. 

In this section, only K I in DLSM is considered. But it needs to be

entioned that K can also be calculated by Eq. (14) with similar
II 
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Table 1 

Configurations of models in DLSM and results of fracture toughnesses. 

Test type Dimension (mm) ∗Fracture toughness (1 mm) ∗Fracture toughness (0.5 mm) ∗Fracture toughness (0.25 mm) 

SCB D = 30, t = 12, a = 7.5,Span = 24 2.00 1.30 1.15 

CSTBD D = 30, t = 12, 2a = 13.5 2.67 1.62 1.01 

CCNBD D = 30, t = 12, a 0 = 2.6775, a 1 = 8.8875 2.73 1.55 1.13 

HCFBD D = 30, t = 12, 2a = 15, r = 3 2.22 1.40 1.14 

SD 0.35 0.14 0.07 

RSD (%) 14.61 9.67 6.24 

( ∗unit: MPa.m 
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Fig. 6. Relative standard deviation among the fracture toughness tests. Un ∗

for models with diameter of 0.25 mm, 0.5 mm and 1 mm are 2.927e −3 mm, 

5.854e −3 mm and 11.708e −3 mm, respectively. 
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rocedures. However, we found that the micro tensile failure can

eproduced both fracture patterns in mode I and mode II from our

hysical tests and tests from the literature, which will be described

n Section 3.3 . 

.2. Influence of particle size on fracture toughness 

Fracture toughness is an indication of the amount of stress re-

uired to propagate a fracture and is regarded as the key param-

ter in materials containing a crack. In conventional fracture me-

hanics, a material has a fracture toughness value for each mode of

oading, i.e., subject to tension, shear and tear. Many testing meth-

ds are designed to obtain this parameter. For example, the mode

 fracture toughness can be determined through a cracked straight-

hrough Brazilian disc (CSTBD) test ( Atkinson et al., 1982 ), cracked

hevron notched Brazilian disc (CCNBD) test ( Fowell, 1995 ), semi-

ircular bending (SCB) test ( Aliha and Ayatollahi, 2011 ), three-point

ound bar test ( Backers, 2005 ), double-cantilever beam test ( Davies

t al., 1998 ), holed-cracked flattened Brazilian disc (HCFBD) ( Wang

t al., 2010 ), etc. However, for the same type of material, the

racture toughness was reported to vary under different testing

ethods ( Rao et al., 2003; Theocaris and Papadopoulos, 1984 ). For

xample, Tutluoglu and Keles (2011) conducted mode I fracture

oughness tests on andesite and marble using the SCB, CCNBD and

traight-notched disc bending (SNDB) methods, and the variation

f fracture toughness was noted. They explained that the variation

as caused by the specimen geometry, i.e., the size of the fracture

rocess zone (FPZ). However, their experiment did not use homo-

eneous material, so it may be possible that a significant portion

f the inconsistency was due to the heterogeneity of the material,

part from the geometry or the testing method itself. 

Actually, we consider that the inconsistency is influenced by the

ntrinsic length-scale of the microstructure of the material. To ver-

fy this hypothesis, models at three different resolutions (particle

izes of 1 mm, 0.5 mm and 0.25 mm) are used in homogeneous

LSMs for four testing methods (SCB, CSTBD, CCNBD and HCFBD).

he simulation material is with Young’s modulus of 4.1 GPa, a Pois-

on’s ratio of 0.19 and their geometries are listed in Table 1 . The

ispersion of K IC among the four testing methods is described us-

ng the relative standard deviation (RSD). The RSDs for the three

article sizes are plotted in Fig. 6 for comparison. It shows that the

SD decreases as the particles become finer. Therefore, it is pre-

icted that with a sufficient decrease in particle size, the variance

ill approach zero. When the particle size becomes infinitesimal,

hich is equivalent to the assumptions behind the continuum-

ased models, the fracture toughness will be a constant regard-

ess of the geometry. Nevertheless, in real materials, atoms or

olecules will form a certain mixture that has intrinsic length-

cale of the microstructure. For example, in sandstone, the par-

icles can be observed by the naked eye, so it is impossible to

btain invariant fracture toughness with different testing meth-

ds. However, the particle-based model can reproduce the variance

y selecting a proper simulation particle size so that the intrinsic
ength-scale of the microstructure can be deduced when the de-

ree of variance is known. 

In conclusion, because the fracture toughness from the tests is

ot invariable, its use as a fracturing criterion index in numerical

odelling is questionable. Moreover, DLSM reveals that at least a

ignificant portion of the inconsistency is related to the intrinsic

ength-scale of the microstructure in the material. 

.3. Relationship between the spring failure and critical stress 

ntensity factors 

SCB tests can be used for different fracture modes by varying

he inclination angle β (see Fig. 7 ). The critical values of mode I

nd mode II stress intensity factors are calculated in components

y Eqs. (15) and ( 16 ), respectively: 

 I f = 

P cr 

2 Rt 

√ 

πa Y I (15) 

 I I f = 

P cr 

2 Rt 

√ 

πa Y II (16) 

here Y I or Y II is the dimensionless SIF for mode I or II and is a

unction of a / R, s / R and β; a is the notch length; R is the radius of

he semicircle; s is half the distance between two point supports

t the bottom; and t is the thickness of the sample. Pure mode

 corresponds to β = 0 °, and the pure mode II failure appears at

= 54 ° with α/ R = 0.35 and s / R = 0.5 according to Ayatollahi and

liha (2007) . 

According to the aforementioned geometrical ratios, three

LSM models are built for mode I fracture ( β = 0), mixed mode

racture ( β = 30 °) and mode II fracture ( β = 54 °). The SCB exper-

ment on sandstone and granite were also conducted using Shi-



48 C. Jiang et al. / International Journal of Solids and Structures 118–119 (2017) 41–57 

Table 2 

Material properties of rock used in SCB test. 

Origin Density (g/cm 

3 ) E ∗ (GPa) σ c 
∗(MPa) σ t 

∗(MPa) 

Sandstone Wuding county, Yunnan,China 2.21 9.8 71.4 3.7 

Granite Zhuozhou city, Hebei, China 2.73 31.7 151.3 7.3 

( ∗Young’s modulus E and compressive strength σ c are from uniaxial compressive strength test and the 

tensile strengths σ t are from Brazilian tensile strength tests) 

2s

F

R

a
β

Fig. 7. Set-up of SCB test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Configurations of SCB on Johnstone selected from Lim 

et al., (1994a) and Lim et al., (1994b) . 

β a (mm) D (mm) t (mm) F peak (kN) 

0 16.4 95 19.8 0.187 

0 16.4 95.9 20.3 0.193 

0 16.7 95.1 19.7 0.183 

0 16.9 95.9 20.4 0.235 

30 16.3 95.9 20.6 0.268 

30 17.7 95.8 20 0.236 

30 16.5 95.9 19.8 0.211 

30 16.7 95.9 19.9 0.212 

54 16.6 95.8 18.5 0.346 

54 16.9 96 19.3 0.384 
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t  
madzu AGSH5KN universal tester. The specimens are 50 mm in di-

ameter and 25 mm in thickness, and the pre-existing crack geome-

try follows the aforementioned ratios. The material properties ob-

tained from mechanical tests are shown in Table 2 . The DLSM sim-

ulation results are in reasonable agreement with the experimental

fracture patterns in Fig. 8 . However, only the normal spring is used

as a fracturing criterion in the above examples; i.e., no shear spring

breakage is allowed, but the crack path is still well simulated even

for a pure mode II crack. To investigate the effectiveness of this

simple fracturing law only by normal spring, the experiment on

SCB specimens made of Johnstone in Lim et al. (1994a) and Lim

et al. (1994b) is employed. The only failure parameter Un ∗ is cal-

ibrated by the mode I fracture toughness test on SCB specimen.

Johnstone is a synthetic rock purported to be homogeneous and

isotropic ( Lim et al., 1994a ). To be consistent, only the experimen-
(a)

(b)

(c)

Fig. 8. Crack paths under different fracture modes in (a) DLSM (b) sandstone (c) granit

normal springs only. 
al data obtained with respect to s / R = 0.5 and a / R = 0.35 are uti-

ized (refer to Table 3 ). First, DLSM is calibrated to match the me-

hanical behaviour of Johnstone. Lim et al. (1994a) provided a typ-

cal load-displacement curve of SCB, and its slope is used to cal-

brate the Young’s modulus and the averaged peak value (about

.2 kN) for mode I tests from deduction is used to calibrate Un ∗

see Fig. 9 ). Using the same micro-parameter, DLSM simulated the

racture in mixed mode and mode II. The experimental data and

imulated results are summarized in Fig. 10 a. A perfect match is

bserved, which affirms that the simple fracturing law only de-

ended on normal spring can be used in mixed mode and even

ode II failure. This indicates that the macro-fracture behaviour

ould be a result of the accumulation of micro-normal spring fail-

re only. Thus, the number of parameters for crack detection is re-

uced to only one in DLSM, whereas three intensity factors are re-

uired to be assessed in LEFM. 

The same approach is also applied to sandstone and granite.

he comparisons to the DLSM results are shown in Fig. 10 b and c.

t is observed that the two curves diverge but are still reasonably

imilar in trend. The divergence may be attributed to the hetero-

eneity of the rock because it is not as homogenous as the syn-

hetic Johnstone: the mix of minerals can be observed at the sur-
e; The crack path in DLSM is a result of successive failure of springs induced by 
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Fig. 9. Load-displacement curves for the specimen and model fractured in mode I. 
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Fig. 11. Top view of the crack along the thickness in SCB specimens under X-ray CT 

for (a) sandstone (b) granite. 
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ace. Therefore, the heterogeneity is applied to the models using

he single-parameter controlled Weibull distribution which is 

f ( λ) = m λm −1 e ( −λm ) (17) 

here λis the scaled parameter that described the property of the

aterial and m is the shape factor which implies that the proper-

ies of particles will be within a narrow range close to the mean

alue for higher value of m . In another word, the larger value of

 indicates more homogeneous material (refer to Fig. 10 d). The

trength of the material is governed by the ultimate spring defor-

ation Un ∗ whose values of every normal spring is individually

ssigned as 

 n 

∗ = λUn 

∗
0 (18) 

here Un ∗
0 

is the average ultimate normal spring deformation in

he model. It is found that the incorporation of Weibull distribu-

ion can revise the model toward the experimental results, e.g. the

urve in Fig. 10 b with m = 5 lies close to the experimental one for

andstone. However, it is still unreasonable for the granite. This is

ecause the micro-composition of the granite cannot be ignored
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ig. 10. Comparisons of the DLSM models with experiments on SCB specimens made of 

re 0.0068 mm, 0.023 mm and 0.021 mm, respectively. (d) Weibull distribution of the scal
nd the Weibull distribution cannot be simply used to represent

he heterogeneity. The micro-scale X-ray CT images in Fig. 11 show

 relatively straight crack path across the thickness in sandstone

ut a rough path for granite that skirts around some tough grains.

o realistically simulate the granite, the microstructure of the rock

ust be included in the numerical model in the specific location,

hich could be accomplished with the aid of CT scanning. 

The validations thus far affirm that the simple fracturing law by

ormal spring failure can be used to model crack propagation in

he mixed mode. It is indicated that the macro-failure mechanism

s not interrelated one-to-one to the micro-failure modes in this

iscrete particle model. 
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Fig. 12. Loading conditions in DLSM.(a) Single notched disc with inclination angle β . (b) Multiple notched disc with relative angle ϕ = 45 °. 
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4. Validation and applications 

Further validation of the simple fracturing law will be con-

ducted on quasi-static and dynamic examples in this section. Mul-

tiple pre-existing cracks will be applied to discs for the study of

crack propagation and coalescence under quasi-static loading. Dy-

namic loading sceneries will be studied in perforated plates in 2D

and a part of a sphere in 3D. 

4.1. Quasi-static crack propagation 

DLSM is used to simulate mixed mode crack propagation in a

central notched Brazilian disc (CNBD) test conducted by Haeri et

al. (2014) . Their specimens were prepared from a mixture of Port-

land Pozzolana cement (PPC), fine sands and water. The material
(a)

(b)

(c)

Fig. 13. Comparison of the results from experiment, BEM and DLSM with inclination an

simulation ( Haeri et al., 2014 ) (c) Results from DLSM with particle size = 1 mm, Un ∗ = 2.5
roperties set in DLSM are based on Haeri et al. (2014) : a Young’s

odulus of 15 GPa, a Poisson’s ratio of 0.21, and a Brazilian ten-

ile strength of 3.81 MPa. The model is a disc 100 mm in diameter

n the plane stress condition. A pre-existing crack is designed with

ifferent inclination angles β with respect to the loading direction

see Fig. 12 a). 

In the simulation, the loading board is controlled with a con-

tant speed. The particle size in DLSM is primarily chosen to be

 mm in diameter with 7860 particles as its resolution is enough to

roduce satisfied crack patterns. However, it should be noted that

he particle size in DLSM is much larger than the CNBD specimens

ade of cement from Haeri et al., (2014) . The purpose is to reduce

he computational time and replace the complex molecular poten-

ial function with a simple spring constitutive law. Fig. 13 shows
gles of 0 ̊, 30 ̊, 60 ̊, 90 ̊ (a) Experiment ( Haeri et al., 2014 ) (b) Results from BEM 

4e −4 mm. 
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d=0.5 mm d=1 mm d=2 mm

30 degrees 45 degrees

30 degrees
with m=10

60 degrees

(a)

(b)

(c)

45 degrees
with m=10

60 degrees
with m=10

Fig. 14. Results after changes of simulation parameters in DLSM. (a) Simulation with different particle sizes. (b) Simulation with different particle alignments (c) Simulation 

with heterogeneity. For those whose particle sizes are not mentioned, particle size = 1 mm, Un ∗ = 2.54e −4 mm. 
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esults from the experiment, boundary element method (BEM) and

LSM for four inclination angles (0 °, 30 °, 60 ° and 90 °). It can be

hown that DLSM can closely match the results from the experi-

ent. In the first three cases, the cracks initiate at the tip of the

otch, and the wing cracks propagate towards the maximum load-

ng direction. However, when the inclination angle increases to 90 °,
he crack initiates from the centre of the specimen and diverges to

he two loading boundaries. In comparison, the simulation by BEM

n Haeri et al., (2014) always started the crack at either side of the

otch tip, which is less realistic. Models with two different sizes

0.5 mm and 2 mm in diameter) are also chosen to examine the

ize effect on the crack pattern ( Fig. 14 a). The crack pattern tends

o be slim when the particle size decreases. In other words, the

rack grows in a more precise path with smaller particles (closer

o PPC particles), which is more consistent with the experiment.

owever, even with a particle size of 2 mm, DLSM still produces a

easonable fracture pattern. In addition, the influence of the parti-

le alignment direction is investigated. In the DLSM default model,
he particles are stacked layer by layer, which is a horizontal align-

ent. Simulations are also run when the alignment tilts to 30 °,
5 ° and 60 ° ( Fig. 14 b). It is found that the particle alignment has

n influence on the wing crack curvature but not much influence

n the general pattern. Moreover, the heterogeneity is applied with

he Weibull distribution shape factor m = 10. The crack paths il-

ustrated in Fig. 14 c indicate that the influences of the particle

lignment angle are minified by adding the heterogeneity. Thus,

hrough these simulations, DLSM has shown its strong flexibility

n simulating crack propagation. 

The crack coalescence is simulated by multi-crack CNBD testing,

hich is used for comparison with the experiment by Haeri et al.

2015) , whose experimental material was the same as that of Haeri

t al. (2014) . In the multi-crack CNBD testing, parallel pre-existing

racks lay at 45 ° with a 20 mm centre-to-centre distance between

he cracks (see Fig. 12 b). There are four types of CNBD (see Fig. 15 ):

hose with two cracks, three cracks, four cracks and five cracks. The

ey observations are summarized as follows. First, the cracks initi-
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(a)

(b)

Fig. 15. Experimental and simulation results with multiple-notched CNBD. (a) Experimental results ( Haeri et al., 2015 ) (b) Simulations from DLSM. Particle size = 1 mm, 

Un ∗ = 2.54e −4 mm. 
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ate at the tip or tips of the pre-existing cracks whose locations are

closest to the disc centre. Second, the cracks tend to coalesce from

the initiated tip to the midpoint of the pre-existing cracks nearby

with this 20 mm spacing. Third, although the artificial material in

Fig. 15 a already has a high degree of homogeneity, the crack path

is not as regular and predictable as in DLSM. In such a discrete par-

ticle model, each particle can be ensured to have identical proper-

ties. Therefore, it can prevent heterogeneity and is more suitable

than the experiment to objectively investigate crack propagation

A  

Force Force

(a)

(b)

(c)

Fig. 16. (a) Boundary condition at the two perforated holes in the plate. (b) Blasting in h

20% and strength ratio of 3. The results related to PMMA at the corners are from Nakamu
nd coalescence regarding the influences from pre-existing cracks

n terms of length, spacing, inclination angle, plane roughness, etc.

.2. Dynamic crack propagation 

.2.1. Crack propagation on PMMA plates 

Dynamic crack propagation is illustrated with perforated plates.

he simulated material properties are as follows: an elastic modu-

us of 35 GPa, a Poisson’s ratio of 0.21, and a density of 2.45 g/cm 

3 .

 400 mm-wide and 200 mm-high thin plate model is built with
0
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St
re

ss
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)

Time (μs)

omogeneous plates (c) Blasting in plates with percentage spatial inhomogeneity of 

ra et al. (2004) ; Simulation particle diameter = 1 mm. 
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Strength ratio=0.4

Percentage spatial inhomogeneity =10%

Percentage spatial inhomogeneity =20%

Percentage spatial inhomogeneity =5%

(a)

Percentage spatial inhomogeneity =10%

Percentage spatial inhomogeneity =20%

Percentage spatial inhomogeneity =5%

(b)

Strength ratio=0.8 Strength ratio=1.2 Strength ratio=3

Strength ratio=0.4 Strength ratio=0.8 Strength ratio=1.2 Strength ratio=3

Fig. 17. Crack patterns with different percentage spatial inhomogeneity and strength ratios. (a) Blasting in double holes on a plate (b) Blasting in double holes on a plate 

with an additional tiny hole in the middle; Simulation particle diameter = 1 mm. 

Fig. 18. Geometry and crack propagation of the classic double perforated plate with multiple pre-existing cracks. The original model of 20 m × 10 m has been scaled to 

20 mm × 10 mm with particle diameter of 0.03125 mm and Un ∗ = 1e −5 mm. 
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DLSM SBFEM NMMFEM

Fig. 19. Comparison of the crack path simulated by different numerical methods –

FEM from Miehe et al. (2007) , NMM from Zhang et al. (2010) , SBFEM from Ooi et 

al. (2012) . 

 

 

 

 

 

 

 

t  

i  

m  

m  

r  

i  

i  

p  

k  

o  

o  

b  

e  

l  

I  

r  

t  

o  

c  

l  

w

4

 

p  
two perforated holes (10 mm in diameter) positioned symmetri-

cally 100 mm apart, and the blasting forces as pulses are applied

outwards evenly around the boundaries of two larger holes (see

Fig. 16 a). In the second example, a third additional hole (6 mm

in diameter) is added in the centre. The regular lattice structure

generates isotropic material for elastic deformation but causes di-

rectional preference on crack propagation due to the anisotropy of
26 μs 27 μs

34 μs 35 μs

1/8 of sphere 
model Boundary con

(a)

(b)

(c)

Fig. 20. Simulation results in a 3D volume. (a) 3D Blasting model and its boundary cond

applied force, where its magnitude with time is shown on the right. (b) Development of t

surface with Un ∗ = 3.5e −3 mm; Particle diameter is 1 mm. 
he failure surface (see Fig. 16 b). This anisotropy problem also ex-

sts in other LSMs if it is with regular packing, e.g. the lattice solid

odel by Mora and Place (1993) . The crack patterns on polymethyl

ethacrylate (PMMA) from Nakamura et al. (2004) are more natu-

al and free of directional dependency (refer to the small pictures

n Fig. 16 c), which may be attributed to the randomly distributed

mperfections in the material. Base on this assumption, a two-

hase stochastic generation method is introduced, in which two

inds of material properties are randomly assigned to the model;

ne represents the base material and the other is the material with

ther strength. The model is still homogeneous before the cracking

ecause the second material has the same elastic material prop-

rties of the base material. The directional preference can be re-

ieved by introducing the randomly distributed second material.

nfluences of the percentage spatial inhomogeneity and strength

atio are shown in Fig. 17 . As shown in Fig. 17 , in general when

he strength ratio diverges from one, the direction dependence

f fracturing is reduced. However, to reproduce the experimental

rack patterns very high level of spatial inhomogeneity (20%) and

arge differences in the strength properties (ratio of 3) are needed,

hich is a shortcoming of DLSM with regular lattice structure. 

.2.2. Crack propagation on a classic perforated model 

The second example involves a classic numerical problem first

resented by Bouchard et al. (20 0 0) with two perforated holes and
28 μs 30 μs

36 μs 44 μs

dition in the model
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ition. The red is the fixed boundary to the normal direction, and the green is the 

he crack on the surface with Un ∗ = 2.5e −3 mm(c) Development of the crack on the 



C. Jiang et al. / International Journal of Solids and Structures 118–119 (2017) 41–57 55 

t  

u  

m  

c  

o  

s  

c  

n  

m  

fi  

i  

e  

r  

a

4

 

s  

i  

T  

c  

T  

g  

a  

m  

o  

r  

r  

p  

a  

t  

w  

t  

c  

t  

b  

p  

i  

c  

m  

d

 

d  

o  

t  

p  

m

5

 

a  

f  

m  

r  

f  

f  

m  

e  

l  

i  

i  

s  

t  

i  

d  

a  

t  

t  

s  

F  

r  

a

 

i  

p  

t  

w  

p  

s  

b  

m  

t  

p  

f  

a  

r

A

 

v

 

(  

c  

u  

j  

i  

t  

Fig. A1. The errors in calculation of stress intensity factor by displacement extrap- 

olation method at a fixed distance ratio of 1.5. (a) K I calculation errors (b) K II cal- 

culation errors. 
wo pre-existing cracks on the edges (refer to Fig. 18 a). The sim-

lated material has the properties of E = 10 GPa and υ = 0.3. The

odel is subject to tension on the upper and bottom boundaries. It

an be observed from Fig. 18 b-f that the cracks initiate at the tips

f the pre-existing cracks and tilt to the adjacent holes in the early

teps. They then propagate almost symmetrically. Fig. 19 draws the

rack paths obtained from different numerical methods, i.e., the fi-

ite element method (FEM) from Miehe et al. (2007) , numerical

anifold method (NMM) from Zhang et al. (2010) , scaled boundary

nite element method (SBFEM) from Ooi et al. (2012) and DLSM. It

s noted that different numerical methods generate slightly differ-

nt crack paths due to different crack propagation criteria or pa-

ameters. However, they all provide generally similar and reason-

ble paths along with DLSM. 

.2.3. Crack propagation on a 3D sphere 

The last example is the blasting inside a 3D spherical shell. The

cenario is an exploration of a spherical blasting source (40 mm

n diameter) filled to the core of a sphere 100 mm in diameter.

he material in this example is homogeneous so that the model

an be simplified to 1/8 of the actual scenario due to symmetry.

he model and its boundary conditions are shown in Fig. 20 a. The

reen sphere indicates the blasting source, of which only 1/8 has

n effect on the model. The red boundaries restrict the displace-

ent in the corresponding normal directions. Two different thresh-

ld values for a normal spring ( Un ∗) are adopted in two cases to

epresent weak or strong material, and the simulated results are

ecorded in time sequences in Fig. 20 b and c, respectively. In com-

arison, the crack propagation in weak material ( Fig. 20 b) arrives

t the surface of the sphere 8 μs earlier than that in strong ma-

erial ( Fig. 20 c). This is because the crack initiates earlier in the

eak material because the normal spring is easier to break than

he relatively strong material. The total area of the crack also indi-

ates that the cracks are dispersed in the weak material, whereas

hey are relatively concentrated in the strong material. This could

e explained at the particle scale. When the blasting energy ap-

roaches with a strain wave, the springs dissipate the energy by

ts deformation until the maximum spring potential energy is ex-

eeded. Therefore, weak material with smaller Un ∗ must sacrifice

ore springs to dissipate the same amount of energy, leading to a

ispersed crack pattern. 

These three examples show the ability of DLSM in simulating

ynamic cracks in both 2D and 3D. The dynamic fracture broadly

ccurs in many engineering fields such as hydraulic fracturing and

unnel blasting, and the advantage of DLSM is to build a com-

lex geology model to investigate the crack phenomena in a simple

anner. 

. Conclusion and remarks 

In this paper, DLSM is employed for investigating crack prop-

gation in brittle materials. The relationship between the simple

racturing law in DLSM and the crack criterion in classic fracture

echanics is investigated for the first time. First, through the cor-

elation of the spring deformation in DLSM and stress intensity

actor in LEFM, it is proved that the mechanism in DLSM is valid

or the fracture problem. Second, as in the literature, the calculated

ode I fracture toughness is inconsistent for materials with differ-

nt geometries in DLSM. The numerical simulations reveal that a

arge portion of the degree of inconsistency is associated with the

ntrinsic length-scale of the microstructure of the material. Third,

n DLSM, a simple one-parameter fracturing law with a normal

pring reproduces the fracture pattern and failure loads of a syn-

hetic rock in mode I, mixed mode, and mode II crack tests that

nvolve both tensile and shear cracks; thus, it is unnecessary to

ecompose crack criteria into different fracture modes in DLSM,
nd crack propagation detection becomes easier. DLSM is then fur-

her validated through examples with multiple pre-existing cracks

o investigate the crack propagation and coalescence, and the re-

ults are reasonably matched to the experiment from the literature.

inally, dynamic crack propagation is investigated through perfo-

ated plates in 2D and a part of a sphere in 3D, from which the

dvantages of DLSM are highlighted. 

Although DLSM has proved its capability in fracture problems,

t is undeniable that some problems exist. The most concerning

roblem lies in the constitutive model between the particles. Al-

hough simulations in this paper with the simple fracturing law

ork well for brittle materials, when this method is actually ap-

lied to elasto-plastic materials, the cohesive model may be more

uitable. However, the most appropriate constitutive model must

e obtained through experimental validation. The existing testing

ethods or standards for the fracture problem are mostly designed

o serve conventional fracture mechanics (i.e., acquiring macro-

arameters for materials), whereby special experiments are desired

or the calibration purpose for discontinuum-based models. The

uthors suggest further work on the micro-constitutive model and

elated experiments. 

ppendix 

In this appendix, the calculations of stress intensity factors in-

olved in ANSYS and DLSM are presented. 

Firstly, the linear displacement extrapolation method by Eqs.

13) and (14) is used in the regularly meshed ANSYS model to cal-

ulate the stress intensity factor in mode I and mode II. The sim-

lated model is a 100 mm-square in plane stress condition sub-

ect to 100 MPa tensile stress and 100 MPa shear stress as shown

n Fig. 2 a. The crack length is 40 mm. In the linear extrapolation,

wo node sets are required. For simplicity, the ratio of the distance
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Table A1 

Errors of stress intensity factors by displacement extrapolation method in models with 

different crack length and inclination angles. Mesh size is 1 mm. 

Crack length(mm) Inclination = 30 ° Inclination = 45 ° Inclination = 60 °

Mode I Mode II Mode I Mode II Mode I Mode II 

40 2.9% 0.4% 2.2% 0.8% 0.8% 0.2% 

60 2.2% 0.6% 0.6% 0.4% 3.9% 3.5% 

80 2.7% 0.0% 0.3% 0.3% 1.2% 1.0% 

Table A2 

The values of K I calculated by FEM and DLSM and the errors in DLSM as well as the crack opening displacement at the crack tip. 

Particle size = 1 mm Particle size = 0.5 mm 

Crack length(mm) K I (ANSYS) (MPa.m 

0.5 ) K I (DLSM) (MPa.m 

0.5 ) Error U cod-tip (mm) K I (DLSM) (MPa.m 

0.5 ) Error U cod-tip (mm) 

40 0.431 0.430 0.36% 5.32E −05 0.438 1.64% 3.49E −05 

50 0.452 0.448 0.89% 5.56E −05 0.457 1.20% 3.64E −05 

60 0.462 0.457 1.07% 5.68E −05 0.467 1.02% 3.72E −05 

70 0.467 0.462 0.97% 5.74E −05 0.471 1.04% 3.75E −05 

80 0.471 0.469 0.42% 5.81E −05 0.477 1.37% 3.79E −05 

Fig. A2. The errors in calculation of stress intensity factor by displacement extrap- 

olation method fixing the first node at 10th node (a) K I calculation errors (b) K II 
calculation errors. 
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from crack tip to the two nodes is set to an intermediate value

of 1.5 (i.e. L crack tip to second node /L crack tip to first node = 1 .5). The errors

are calculated in three mesh sizes (0.5 mm, 0.8 mm and 1 mm) and

plotted in Fig. A1 . It is noted that the choice of the 10th node as

the first node in linear extrapolation gives a satisfied results among

the three resolutions (all the errors < 5%). In addition, when setting

the 10th node as the first node in the calculation, different ratios

are examined. As noted in Fig. A2 , the ratio of 1.5 provides the ac-

ceptable error ( < 5%). Therefore, the 10th node and the 15th node

are the preliminary choice. 
Secondly, the choice of nodes is subject to the tests to exam-

ne whether it is susceptible to rotation. The mesh size is 1 mm in

hese examples. The crack with length of 40 mm is rotated 30 °, 45 °
nd 60 °, respectively. The errors are summed in Table A1 which

hows it is still suitable with rotations. 

Thirdly, the same strategy is applied to DLSM in calculating SIF

n mode I only. The crack length varies from 40 mm to 80 mm, and

esults for two particle size (0.5 mm and 1 mm) are summarised

n Table A2 . It is noted that the errors to the FEM solution is low

 < 2%). 
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