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A B S T R A C T   

As a newly developed computational method, the four-dimensional lattice spring model (4D-LSM) is computa
tionally intensive due to the introduction of extra-dimensional interactions. In this work, the 4D-LSM is paral
lelized to fully utilize the available computational resources of modern computers, namely, the multi-core CPU 
and the GPU. To utilize computing power of the multi-core CPU, OpenMP with a fork-join scheme is used to 
assign computational tasks to different CPU threads, whereas CUDA, with a granular computing scheme, is 
adopted to assign computations to thousands of GPU threads. A domain decomposition with a data communi
cation scheme is proposed to utilize both the multi-core CPU and the GPU. The influence of digital precision and 
hardware on the parallel computing performance of the 4D-LSM are investigated through a number of numerical 
examples including elastic deformation, elastic bulking and dynamic fracturing. Finally, the multi-core CPU 4D- 
LSM is used to solve a crack propagation problem and is compared with existing experimental and numerical 
results.   

1. Introduction 

The four-dimensional lattice spring model (4D-LSM)1 was developed 
to solve the Poisson’s ratio limitation of the classical lattice spring 
model2 by introducing fourth dimensional interactions. Its main 
advantage is the feasibility of dealing with nonlinear dynamic responses 
of solids including fracturing. In the 4D-LSM, fracturing of the solid is 
represented as a sequence of spring bond breakages between particles. 
Conceptually, it is similar to the treatment adopted in the damage-based 
model,3 the phase field model,4 and the cohesive zone model (CZM).5 

For CZM-based numerical approaches,6 the base numerical method, e.g., 
the finite element method (FEM),6 the numerical manifold method 
(NMM),7 the scaled boundary finite element method (SBFEM),8 is used 
to address mechanical responses of the bulk material, whereas the 
fracturing is handled by CZM elements. However, “artificial compli
ance” spurious elastic behaviour due to the insertion of CZM interfacial 
elements might arise for both the “extrinsic”- and “intrinsic”-based 
CZMs.9 The LSM can be viewed as a computational method that is made 
from the purely intrinsic-based CZM-like interactions, where the bulk 
response is also represented by CZM-like interactions. Because there is 
no introduction of zero thickness interface elements, the LSM is free 

from the “artificial compliance” problem. However, to have a realistic 
simulation of solid fracturing with the LSM usually requires a large 
number of numerical elements, which is computationally demanding. 
Parallelization is the only feasible solution. 

With the popularization and maturity of modern computer technol
ogy, such as the 64-bit operating system, the multi-core central pro
cessing unit (CPU) and the graphics processing unit (GPU), it is possible 
to conduct large-scale scientific computations with personal computers. 
Some researchers even believe that a new era is coming for scientific 
computing.10 Due to technical or economic constraints, the computing 
performance (the number of instructions processed per second) of a 
single processor is currently close to the limit. A multi-core CPU is a 
straightforward solution to increase the performance from integrating 
more cores in a single CPU chip. A modern multi-core CPU has 2 to 28 
cores,11 which could run up to 56 CPU threads using the hyper-threading 
technique. A GPU was specially designed for image processing. Due to its 
highly parallel structure, the GPU has an advantage on the processing of 
massive simple mathematical operations simultaneously, which was 
recently used in scientific computing. The basic concept of the GPU is 
close to the multi-core CPU, however, it integrated much less sophisti
cated processing units, e.g., there are 1280 CUDA cores on the GeForce 
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GTX1060 card.12 In a modern computer, in most cases, it will be 
equipped with both a multi-core CPU and a GPU. However, to obtain the 
performance gain of the multi-core CPU and the GPU for a specific nu
merical method, parallel implementation of the numerical method is 
required. Currently, parallelization techniques such as Open 
Multi-Processing (OpenMP)13 and Compute Unified Device Architecture 
(CUDA)12 are available to parallelize a serial code. Many numerical 
methods have been parallelized with these techniques, e.g., the 
boundary element method (BEM),14 the FEM,15 the material point 
method (MPM),16 the discrete element model (DEM),17–19 the smoothed 
particle hydrodynamics (SPH) method,20 discontinuous deformation 
analysis (DDA),21 and the distinct lattice spring model (DLSM),22 

finite-discrete element method.23,24 Typical GPU speedups were re
ported from 10 � to 100 � . However, there are some drawbacks in these 
studies. First, they were more focused on the speed up of the parallel 
computing, but lacked a deep investigation on the precision in solving 
various mechanical problems under the CPU-GPU heterogeneous 
computing environment. Second, most of these works did not make full 
use of both the multi-core CPU and GPU. The most computationally 
intensive part is handled by either the multi-core CPU or GPU alone, 
rather than being shared evenly between them. 

In this work, we parallelize the 4D-LSM to fully utilize the multi-core 
CPU and GPU equipped in modern computers. First, a brief introduction 
to the concept and calculation procedures involved in 4D-LSM is pre
sented. Then, the parallel implementation of 4D-LSM for the multi-core 
CPU and GPU environments is presented, which emphasizes parallel 
strategies on the multi-core CPU, GPU, and the CPU-GPU three schemes. 
Following this, the influences of digital precision and computing hard
ware (the multi-core CPU and GPU) are investigated through performing 
a number of numerical examples covering a wide range of mechanical 
problems. The parallel performance of multi-core CPU 4D-LSM and GPU 
4D-LSM is tested using computers with different configurations. 

2. Parallelization of 4D-LSM 

2.1. 4D-LSM 

In 4D-LSM, the 3D world is assumed to be a membrane in four di
mensions, which is further presented through a group of discrete 4D 
particles through springs. Details of description and proof of 4D-LSM can 
be found in Ref. 1. Here, we will only focus on equations, which are 
essential for the parallel implementation. First, for a 4D particle, its 
spatial position and motion are represented as: 

xi¼ðxiyiziϑiÞ
T (1)  

_xi¼ð _xi _yi _zi _ϑiÞ
T (2)  

€xi¼ð€xi €yi €zi€ϑiÞ
T (3)  

where i refers to the ith particle; x, y, z and ϑ are the corresponding four 
coordinates of the particle; _x, _y, _z and _ϑ are the particle velocity in four 
directions; and €x, €y, €z and €ϑ are the particle acceleration in four di
rections. Using the time central differential integration, the position of 
the 4D particle is updated as: 

xtþΔt
i ¼ xt

i þ _xtþΔt
2

i Δt (4)  

in which t is the time and Δt is the time increment. The particle’s velocity 
can be obtained in a similar way as: 

_xtþΔt
2

i ¼ _xt� Δt
2

i þ €xt
iΔt (5) 

The 4D distance between particle i and j is calculated as: 
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If these particles are linked through a spring with stiffness of k, then 
the spring force induced from particle j to particle i can be given as: 
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(7)  

where l0ij and ltij are the initial and current spring length calculated from 
Equation (6). In 4D-LSM, the body force along the fourth dimension is 
assumed to be zero, and the current particle force of a given particle with 
m neighbour particles are calculated as: 

f i¼
Xm

j¼1
fz

ij þ gmi (8)  

in which mi is the particle mass, and g ¼ ðgx; gy; gz; 0ÞT (gx, gy, and gz are 
the gravity accelerations). In 4D-LSM, the Newton’s second law is 
assumed to also be applicable in the fourth dimension, and the particle 
accelerations in four directions are given as: 

€xt
i ¼

ft
i

mi
(9) 

Equations (1)–(9) are all of the essential calculations involved in the 
parallel implementation of 4D-LSM, which are all natural extensions of 
the classical 3D LSM25 to the four-dimensional space. 

In 4D-LSM,1 a parallel world concept is used to construct the 4D 
lattice model through its 3D counterpart (see Fig. 1). The parallel copy of 
the 3D model is formed from an offset operation along the fourth 
dimension. The original 3D lattice model and its parallel version make 
up a 4D membrane. Then, the original particles and parallel particles are 
connected through 4D springs. For the cubic lattice, there are three types 
of 4D springs (see Fig. 1); their stiffness variables are kα, kβ, and kγ. To 
represent the isotropic elasticity, their stiffness values must satisfy the 
following equation1: 

kα¼ kβ ¼ 4=3kγ ¼ λ4Dk (10)  

where λ4D is the 4D stiffness ratio and k is the stiffness of the 3D spring, 
which can be further given as: 

k¼
6VE

η
P

l2
i

(11)  

in which V is the represented volume of the 3D lattice model, E is the 
elastic modulus, li is the initial spring length of the 3D lattice model, and 
η is a scale parameter, which can be further obtained as1: 

η¼ � 0:0078506λ2
4D þ 0:41613615λ4D þ 1:00369223 (12) 

The 4D stiffness ratio can be further obtained from the Poisson’s ratio 
as: 

λ4D¼ � 211:13493779v3 þ 162:84655851v2 � 55:42449719vþ 6:92902211
(13)  

where v is the Poisson’s ratio. With Equations (10)–(13), the corre
sponding mechanical parameters (spring stiffness) can be determined 
for Equation (7). These equations are all pre-calculated and will not be 
involved in the calculation cycle of 4D-LSM. Therefore, there is no need 
for parallelization. More details and mathematical proof of these equa
tions and the meaning of 4D interaction can be found in the original 
work of 4D-LSM.1 

In this work, fracturing of the solid is described by a cohesive zone 
like model26 which can be written as 

f ¼ð1 � DÞku (14)  

where D repents the amount of damage to the spring. For example, the a 
linear softening damage function is used for the 3D spring as 
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where u*
3D is the peak deformation of the spring bond, and χ is the ratio 

of the peak deformation to its ultimate deformation (see Fig. 1a). In 4D- 
LSM, damage of the four types of spring stiffnesses were assumed as 

Dα � 0;Dβ ¼ Dγ ¼ D3D (16) 

More details on failure model of 4D-LSM and parameters selection 
can found in Ref. 26. 

2.2. Parallelization strategy 

A modern computer, a personal computer or workstation usually 
contains a multi-core CPU and a GPU. To fully utilize these computing 
resources, it is essential to understand the data flow of numerical 

modelling on the computer system. As shown in Fig. 2, for most cases, 
the computational model is stored in the hard drive (HD). For numerical 
modelling with multi-core CPU, the data are first read from the HD to the 
memory (DRAM) then read from DRAM to the cache of the CPU, and 
finally the data will be processed by the CPU. For multi-core paralleli
zation, each CPU core will handle a small portion of the data. No data 
communication is required because the CPU cores can access all of the 
data on the DRAM. For GPU computing, the data needs to be transferred 
from DRAM to the graphical DRAM of the GPU, which is instructed by 
the CPU. In GPU computing, the most intensive computing will be 
handled by the GPU. The GPU threads can also access all of the GPU 
memory. When we want the CPU and GPU to handle different portions 
of the computational model, the computer system should be treated as a 
distributed memory system in this condition. In this case, we have to 
perform domain decomposition and communication. In this work, we 
consider multi-core CPU parallelization, GPU parallelization and CPU- 
GPU parallelization. For the first two cases, we use the shared mem
ory parallel strategy, while in the third case we adopt the distributed 
memory parallel strategy. Based on these strategies, the corresponding 
parallel implementation is explained in the following section. 

Fig. 1. Basic concept and components of the 4D-LSM.1  
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2.3. Serial implementation 

The calculation cycle of the 4D-LSM is shown in Fig. 3. The particle 
position update refers to Equation (4); the corresponding C pseudocode 
for a serial CPU 4D-LSM code was given Appendix A including the 
particle position update, the particle force calculation in Fig. 3, the 
particle acceleration calculation, and the motion update step. These 

pieces of pseudocode are the most computational intensive part of 4D- 
LSM. 

2.4. Multi-core CPU parallel implementation 

In this work, we used OpenMP to parallelize these pieces of code for a 
multi-core CPU. Only a few lines are required to be added to the serial 

Fig. 2. Typical data flow of numerical modelling on a modern computer with a multi-core CPU and GPU.  

Fig. 3. Calculation cycle of the 4D-LSM and parallelization strategies for a modern computer with a multi-core CPU and GPU.  
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version. The multi-core CPU parallel pseudocodes of particle position 
update, the particle force calculation, the particle acceleration calcula
tion and the motion update step were listed in Appendix B. 

2.5. GPU parallel implementation 

The GPU implementation is more complex. There are two main parts. 
The first part is the communication between CPU and GPU, which can be 
completed by using the CUDA function cudaMemcpy. The data 
communication is only conducted at the beginning and the end. The 
entire calculation cycle is performed within the GPU. In CUDA, the 
function run in the GPU is called the kernel. Pseudocodes of the main 
framework and the particle force calculation of GPU 4D-LSM were given 
in Appendix C. The function (kernel) will be executed by thousands of 
GPU threads simultaneously. To complete this, we should call the kernel 
through the following format:  

ckParticleForce<<<nGPUBlocks, nGPUThreads≫> (NP)                          

where nGPUBlocks is the number of blocks allocated for the kernel, 
nGPUThreads is the number of threads assigned per block, and NP refers 
to the number of particles assigned to GPU. The total number of threads 
executing the kernel are nGPUBlocks � nGPUThreads. For particle po
sition, velocity and acceleration updates, the corresponding GPU kernel 
can be modified in a similar way. To further optimize the GPU code and 
shared memory, the fast hardware math library and memory coherence 
can be adopted.21 However, because the particle force computation has 
to access the memories of the corresponding neighbouring particles, the 
memory operation of the 4D-LSM is complex. Therefore, the memory 
coherence optimization is not adopted in this work. The GPU 4D-LSM 
with CUDA could utilize multiple GPU cards for proper hardware 
configuration.23 

2.6. CPU-GPU parallel implementation 

When both the CPU and GPU are used for the calculation cycle, the 
total number of particles are divided into to two parts: ½1⋯Ngpu� and 
½Ngpu þ 1⋯N�. Here, the domain decomposition is based on the index of 
the particles, and the entire computational model will be divided into 
two parts. The particle position, velocity and acceleration can be 
computed without accessing the corresponding neighbour particles. As 
an example, the corresponding pseudocode for the particle position 
calculation was given in Appendix D. The particle force update can be 
worked out by using a similar manner. The only difference is that a 
communication between the CPU and GPU is required before the 
execution of the particle force updates. Those particles, belonging to the 
CPU domain and neighbouring with particles of CPU domain, are put 
into a GPU2CPUList, and before the CPU particle force calculation, the 

corresponding particle position are transmitted from the GPU to the 
CPU. A CPU2GPUList is also formed for the GPU computing. Before the 
computing of particle force, the particle position of these particles in the 
GPU memory will also be updated from the CPU to the GPU. 

3. Numerical examples 

3.1. Deformation of a table under pressure 

The computational differences between the parallel DLSM25 and the 
parallel 4D-LSM are studied by a static elastic deformation problem. 
Fig. 4a shows the 4D-LSM model and the corresponding boundary 
conditions. The table is made up of 116,000 particles with a diameter of 
1 mm. The material parameters are E ¼ 10 GPa, ν ¼ 0.2, ρ ¼ 2.0 � 103 

kg/m3. Under a surface pressure loading of 1 MPa, the square table was 
supposed to deform symmetrically. Without loss of generality, the ver
tical displacement along the table’s surface middle line was selected as 
our target. Fig. 4b shows the displacement curves predicted by the DLSM 
and 4D-LSM using different computing hardware and digital precisions. 
These results calculated with the double precision are very close, 
including multi-core CPU DLSM, GPU DLSM, multi-core CPU 4D-LSM 
and GPU 4D-LSM. When using the float precision, GPU DLSM can give 
qualitative results, but the specific deformation is not consistent, while 
the result of the GPU 4D-LSM is obviously wrong because the curve is 
almost horizontal, and the specific deformation is totally different from 
the others. More intuitively, Fig. 5 shows the vertical deformation 
contour predicted by the GPU DLSM and GPU 4D-LSM with different 
digital precisions. Fig. 5a, (b) and (d) are predicted by float precision 
GPU DLSM, double precision GPU DLSM and double precision GPU 
4D-LSM, respectively, which can give a qualitative description of the 
problem — sunken in the middle and four legs upward. For double 
precision GPU DLSM (Fig. 5b) and double precision GPU 4D-LSM 
(Fig. 5c), the differences in upward and downward maximum dis
placements are 3% and 1%, respectively. Although the GPU DLSM with 
float precision has a similar contour (Fig. 5a), compared with the GPU 
DLSM with double precision (Fig. 5b), the differences in upward and 
downward maximum displacements reach 10% and 9%, respectively. 
However, the contour of float precision GPU 4D-LSM (Fig. 5c) is totally 
different from the other three cases, where almost all of the desktop has 
a downward displacement. In summary, for GPU 4D-LSM, double pre
cision is strongly required. 

3.2. Elastic buckling of a bar 

This example is about the dynamic elastic instability of a bar under 
vertical loading. The purpose is to analyse the differences of the 4D-LSM 
in solving nonlinear elastic problems using the CPU and GPU. As shown 

Fig. 4. Elastic deformation of a table under pressure: (a) computational model and (b) deformation along the measure line predicted by the DLSM and 4D-LSM using 
a multi-core CPU and GPU with different digital precisions. 
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Fig. 5. Deformation contour of the table predicted by the GPU DLSM and GPU 4D-LSM with different digital precisions: (a) the GPU DLSM with float precision, (b) 
the GPU DLSM with double precision, (c) the GPU 4D-LSM with float precision, and (d) the GPU 4D-LSM with double precision. 

Fig. 6. Computational model and applied loading of an elastic bar buckling problem.  
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in Fig. 6, the computational model is a 3D bar with dimension of 10 mm 
� 10 mm � 100 mm. The model consists of 10,000 particles with a 
diameter of 1 mm. The model boundary condition is that the bottom of 
the bar is hinged to limit the displacement in all directions. We set the 
sleeve piece on the top of the pressure bar (as shown in Fig. 6 red area); 
the height of the sleeve piece is 10 mm to constrain the displacement in 
the horizontal direction (XZ direction) of the top end of the bar. An axial 
compressive load F ¼ � 50 kN with the action line coinciding with the Y 
axis is applied to the bar (see Fig. 6). The material properties are E ¼ 10 
GPa, ν ¼ 0.2 and ρ ¼ 2.5 � 103 kg/m3. As shown in Fig. 7, there is a 
vertical vibration state during the calculation process. From 1000 steps 
to 56000 steps, the pressure bars calculated by the CPU and GPU always 
vibrate within the elastic range with the same amplitude. As shown in 
Fig. 7, there is no significant difference between the results predicted by 
the GPU 4D-LSM and the CPU 4D-LSM at 1000 steps and 20000 steps. 
Here, we refer to the top surface deformation along y direction of the bar 
as S (mm). When the bar enters the unstable state, the difference of the 
displacement values predicted by the CPU 4D-LSM and the GPU 4D-LSM 
increases gradually. For example, at 60000 steps, S(CPU) ¼ 1.77 mm, 
S(GPU) ¼ 3.21 mm, and ΔS ¼ 1.44 mm; at 64000 steps, S(CPU) ¼ 11.78 
mm, S(GPU) ¼ 13.26 mm, and ΔS ¼ 1.48 mm. This example reveals that 

even if we are using double digital precision, for solving highly 
nonlinear large deformation problems, there will be apparent differ
ences between multi-core CPU 4D-LSM and GPU 4D-LSM, especially at 
the post failure stage. 

3.3. Surface cracking of a notched sphere 

The dynamic fracturing of solids is a geometric nonlinear problem 
where the topology of the computational model is dynamically changing 
during the calculation. In this example, the GPU 4D-LSM and CPU 4D- 
LSM will be used to solve a 3D surface fracturing problem of a hollow 
sphere under blasting. Fig. 8 shows the computational model: the 
diameter of the entire sphere is 100 mm and the thickness of the wall is 
30 mm. The dimension of the initial crack is 30 mm � 10 mm � 2 mm. 
There are 489,828 particles with a diameter of 1 mm. The material 
properties are E ¼ 35 GPa, ν ¼ 0.21, and ρ ¼ 2.45 � 103 kg/m3, and the 
ultimate deformation for spring breakage is un* ¼ 0.003 mm. A uni
formly distributed blasting load is applied on the inner surface. The blast 
loading is represented as a triangle pressure load that has a peak pres
sure of 1598 MPa; the rise time and total duration time are of 15 μs and 
100 μs, respectively. Fig. 9 shows the fracturing process of the hollow 

Fig. 7. Bulking process of the bar predicted by the multi-core CPU 4D-LSM and GPU 4D-LSM: (a) multi-core CPU 4D-LSM and (b) GPU 4D-LSM.  

G.-F. Zhao et al.                                                                                                                                                                                                                                 
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sphere predicted by the multi-core CPU 4DLSM and GPU 4D-LSM. 
Generally, the results of the multi-core CPU 4D-LSM (Fig. 9a) and GPU 
4D-LSM (Fig. 9b) are similar, especially the first three images. The 
surface cracks extend symmetrically along the short edges of the original 
crack in an arc. However, as the calculation continues, differences be
tween the multi-core CPU 4D-LSM and the GPU 4D-LSM begin to appear, 
and the final form of surface cracks correspondingly shows the differ
ence in detail. 

3.4. Deformation of a cube under gravity 

In this example, the dynamic deformation process of a cube under 
gravity is solved by the fully coupled CPU-GPU 4D-LSM. As is shown in 
Fig. 10, the cube has a dimension of 50 mm � 50 mm � 50 mm; its 
bottom is fixed along the y direction, and under gravity, the cube will 

deform gradually. There are 125,000 particles with a diameter of 1 mm. 
The material properties are E ¼ 10 GPa, ν ¼ 0.2, and ρ ¼ 2.45 � 103 kg/ 
m3. The domain decomposition is adopted in this example, and the 
model is divided into CPU and GPU parts. The y-direction velocity 
contour of the cube at 50 μs is predicted by the 4D-LSM using 100% of 
the CPU domain, 100% of the GPU domain, and 50% of the CPU and 
50% GPU domains are given in Fig. 10 (b), (c) and (d), respectively. 
Good spatial symmetry is presented in the results solved with 100% CPU 
domain (Figs. 10b) and 100% GPU domain (Fig. 10c), and the maximum 
particle velocities between them only differs approximately 0.5%. 
However, when the 50% CPU and 50% GPU domains are used, the 
symmetry breaks down (Fig. 10 d), and the maximum particle velocity 
differs by 8% compared with the pure CPU or GPU computing. This 
example indicates that the full CPU-GPU heterogeneous parallelization 
for 4D-LSM is still unsuitable due to the different computing precision of 
the CPU and GPU. A further study on eliminating the difference of GPU 
and CPU computing is required. 

3.5. Performance analysis using cubes with different sizes 

The cube deformation problem in the previous section is further 
adopted to study the parallel computing performance of the multi-core 
CPU 4D-LSM and GPU 4D-LSM. To consider influence of the number 
of particles, as shown in Fig. 11, three cubes are built, i.e., 50 mm � 50 
mm � 50 mm, 100 mm � 100 mm � 100 mm and 150 mm � 150 mm �
150 mm. To study the influence of different computational configura
tions, we used three computers. The first one was a PC equipped with an 
Intel Core i5-6400 CPU, a memory of 8G, and a GTX1060 GPU card. The 
second computer was a workstation equipped with two Intel Xeon E5- 
2630 v4 CPUs, memory of 64G, and a Quadro M5000 GPU. The third 
computer was a workstation equipped with two Intel Xeon E5-2660 v3 
CPUs, memory of 32G, and a Quadro K5200 GPU. The cube deformation 
problems were solved with the first two computers using the multi-core 
CPU 4D-LSM and GPU 4D-LSM. The corresponding computational times 
are listed in Table 1. To compare the parallel efficiency of the multi-core 
CPU 4D-LSM and GPU 4D-LSM using different computers, we calculated 
the nominal speedup ratio based on the corresponding computational 
time of the PC with a single CPU thread. The corresponding results are 
plotted in Fig. 12. For multi-core CPU 4D-LSM, the PC using four CPU 
threads could obtain almost 3 times the speed up, while the workstation 

Fig. 8. Computational model of a sphere with surface pre-crack under blasting.  

Fig. 9. Surface fracturing process of the sphere under blasting predicted by the multi-core CPU 4D-LSM and GPU 4D-LSM: (a) multi-core CPU 4D-LSM and (b) GPU 
4D-LSM. 
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with 40 CPU threads could obtain 8 times speedup. Using a GTX 1060 
GPU, the GPU 4D-LSM could obtain approximately 12 times speedup. 
Compared with the investment of the PC equipped with a GTX 1060 and 

that of the workstation with two Intel Xeon CPUs, the GPU computing 
was economically promising. The second computer had 20 CPU cores 
and could provide 40 CPU threads, which was used to test the parallel 
computing performance of the multi-core CPU 4D-LSM. Fig. 13 shows 
speed up of the multi-core CPU 4D-LSM for the cube deformation 
problem using different numbers of CPU threads. The speed up is 
calculated based on the time that the workstation used one CPU thread. 

Fig. 10. Deformation of a cube under gravity: (a) computational model with domain decomposition, (b) velocity contour map in the y direction predicted by the 
CPU-GPU 4D-LSM with 100% CPU domain, (c) velocity contour map in the y direction predicted by the CPU-GPU 4D-LSM with 100% GPU domain, and (d) velocity 
contour map in the y direction solved by the CPU-GPU 4D-LSM with 50% CPU domain and 50% GPU domain. 

Fig. 11. Computational models of the cube under the gravity problem using a 
different number of particles. 

Table 1 
Computational time of the multi-core CPU 4D-LSM and GPU 4D-LSM using 
different computers (seconds).  

Solvers Computers Cube 
50 

Cube 
100 

Cube 150 

Multi-core CPU 4D- 
LSM 

PC (CPU threads ¼ 1) 75.209 639.045 2153.960 

Multi-core CPU 4D- 
LSM 

PC (CPU threads ¼ 4) 27.417 210.664 691.070 

Multi-core CPU 4D- 
LSM 

WS (CPU threads ¼
40) 

9.703 88.100 307.273 

GPU 4D-LSM PC (GPU threads ¼
3200) 

6.411 51.046 184.821  
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As shown in these speed-up curves, computational efficiency is affected 
by the number of particles. Nevertheless, the overall tendency is still the 
same. When the number of CPU threads is under 10, speed up of the CPU 
4D-LSM has a good scaling efficiency, while when the number of CPU 
threads is over 10, the increase of speed up obviously declines. This 
phenomenon is related to the transmission and reading mechanism of 
the multi-core CPU’s memory and cache. When the CPU threads increase 
too much, the system consumes a large number of resources to coordi
nate each CPU thread to read and transfer the model data. Therefore, 
parallel efficiency decreases. It is a disadvantage of the parallel algo
rithm based on shared memory configuration. 

In GPU computation, the number of blocks and threads per block 
required to be set are related to the research of the creation of the most 
efficient parallel computing. Table 2 lists the computational time of the 
GPU 4D-LSM using the PC with the GTX 1060 GPU through setting 
different GPU blocks and threads configurations. To have a more 
effective comparison, the computational time of the GPU 4D-LSM was 
scaled with the corresponding computational time of the CPU 4D-LSM 
using a single CPU thread (shown in Fig. 14). There is a peak value in 
the speed up of each cube, which is almost 2.5 times of total CUDA cores. 
To further verify this setting, two different graphics cards (Quadro 
K5200 and Quadro M5000) were used to calculate the 50 mm � 50 mm 
� 50 mm cube. The corresponding computational time versus the total 
number of GPU threads are shown in Fig. 15. According to the valley 
location of computational time, the GPU threads configuration of 2.5 
times total CUDA cores is still applicable to the Quadro K5200 and 
Quadro M5000 GPUs. Therefore, for the GPU 4D-LSM, we suggest the 

Fig. 12. Speed up comparison between the multi-core CPU 4D-LSM and GPU 
4D-LSM. 

Fig. 13. Speed up of the multi-core CPU 4D-LSM for the cube deformation 
problem using a different number of CPU threads. 

Table 2 
Computational time of the GPU 4D-LSM using the PC with GTX 1060 GPU.  

Blocks Threads per block Total threads Computational time (s) 

Cube 50 Cube 100 Cube 150 

10 32 320 26.659 213.779 737.379 
10 64 640 15.232 119.756 417.024 
10 128 1280 9.088 69.976 244.733 
10 160 1600 8.205 65.775 229.351 
10 200 2000 7.463 58.698 207.27 
10 300 3000 6.664 52.545 187.919 
50 32 1600 8.243 65.931 228.863 
50 64 3200 6.411 51.046 184.821 
50 128 6400 6.233 54.247 198.544 
50 160 8000 6.739 57.299 201.01 
50 200 10000 6.839 63.093 226.262 
50 300 15000 7.078 57.933 206.35 
100 32 3200 6.42 51.313 183.862 
100 64 6400 6.244 54.07 197.592 
100 128 12800 7.138 57.103 208.803 
100 160 16000 6.727 56.944 201.188 
100 200 20000 6.669 57.124 201.749 
100 300 30000 6.883 59.511 206.82  

Fig. 14. Speed up of the GPU 4D-LSM for the cube deformation problem using 
a different number of GPU threads. 

Fig. 15. The optimal GPU threads of the GPU 4D-LSM for the cube deformation 
problem on Quadro K5200 and Quadro M5000 GPUs (two dash lines refers to 
2.5 times of the total CUDA cores of two GPUs, respectively). 
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number of total GPU threads as being 2.5 times the total CUDA cores in 
the corresponding GPU. 

3.6. Crack propagation of a notched plate with hole under tension 

In this example, the multi-core CPU 4D-LSM is further used to solve a 
crack propagation test of a notched plate under tension, which was 
previous solved by FEM with phase field models.27 Fig. 16 shows the 
geometric parameters of the notched plate with hole and the corre
sponding 3D computational model adopted in this work. The overall size 
of the plate is 120 mm � 65 mm � 15 mm. The radii of the two small 
holes for boundary conditions are both 5 mm, one of the centres is 20 
mm from the left boundary and 20 mm from the top boundary, and the 
other centre is 20 mm from the left boundary and 20 mm from the 
bottom boundary. An upward velocity loading is applied to the upper 
hole, while the lowest hole is fixed in the vertical direction. The radius of 
the large hole is 10 mm, and its centre is 28.5 mm from the right 
boundary and 51 mm from the bottom boundary. The original notch 
runs through the front surface and the rear surface, with 10 mm as the 
length and 1 mm as the thickness, and its centre line is 65 mm from the 
bottom boundary. There are 109,710 particles with a diameter of 1 mm. 
The material properties are E ¼ 5.98 GPa, ν ¼ 0.22, ρ ¼ 2.00 � 103 

kg/m3, and the ultimate deformation for the spring breakage is un* ¼
3.34 � 10� 3 mm. Fig. 17a and (b) show the displacement of the upper 
hole versus the reaction force curve and the crack propagation process of 
the notched plate under tension. With the expansion of the crack, the 
bearing capacity decreases rapidly. The descending section in the curve 
of the second crack is not as smooth as the first one. The first crack is 
longer but costs less time, therefore, it has a faster crack speed. This 
observation is in agreement with the numerical observation using the 
FEM with a phase field model.27 Fig. 18 further shows the final form of 
the cracked pattern of the specimen, including experimental data, FEM 
simulations (anisotropic field, hybrid field), the DLSM, and the 4D-LSM 
simulation. Both the FEM and 4D-LSM are generally consistent with the 
experimental data. There are some differences, e.g., the first crack of the 
numerical simulation with the FEM and 4D-LSM has a horizontal section 

or even moves upward, while that of the experimental simulation de
velops in a bit of a downward direction. For the secondary crack, the 
experimental observation is a roughly horizontal crack beginning at the 
upper part of the large hole (see Fig. 18a). The FEM and DLSM results are 
oblique, or the horizontal crack is at the middle of the large hole, 
whereas the initial position of the 4D-LSM is closer to the experimental 
observation. The reason for this might be that the 4D-LSM has auto
matically considered the nonlinear dynamic during the test. However, a 
full investigation of the ability of 4D-LSM on modelling crack propa
gation28 is still needed, which will be considered in future studies. 

4. Conclusions 

In this work, 4D-LSM is parallelized to fully utilize the multi-core 
CPU and GPU heterogeneous computing resources of modern com
puters using OpenMP and CUDA parallel technology. Details of the 
parallelization implementation are presented. From a number of nu
merical examples including elastic deformation, nonlinear buckling and 
dynamic fracturing, the influences of digital precision on parallel 
computing performance of 4D-LSM using multi-core CPU and GPU are 
fully investigated. It was found that both multi-core CPU 4D-LSM and 
GPU 4D-LSM can provide a speed up ratio of approximately 10. An order 
parallel speedup is very promising for long time numerical simulation 
using the 4D-LSM, therefore, the parallel implementation of the 4D-LSM 
in this work is successful. For the numerical simulation, we found that 
the optimal number of CPU threads for the multi-core CPU 4D-LSM is 
approximately 10 in a workstation with 40 available CPU threads. In this 
sense, the CPU 4D-LSM still cannot fully utilize the computational re
sources provided by the modern multi-core CPU in a workstation. The 
optimal GPU threads for the GPU 4D-LSM was found to be 2.5 times the 
total CUDA cores available in the GPU. In summary, the GPU 4D-LSM 
can solve a problem faster than its CPU counterpart but still falls in 
the same order. Because computational investment of GPU computing is 
much lower than that of multi-core CPU computing, the GPU computing 
for 4D-LSM is still promising. Moreover, based on our numerical results, 
we found that a double digital precision is highly necessary for the 4D- 

Fig. 16. Geometry and computational model of a notched plate with hole: (a) geometry model and (b) computational model of 4D-LSM.  
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LSM. Even with a double digital precision, the GPU 4D-LSM and multi- 
core CPU 4D-LSM still produce different numerical results for nonlinear 
problems. Thus, GPU computing is still suggested to be suitable for a 
numerical simulation of problems at the linear elastic stage. GPU 4D- 

LSM can also be used as a fast numerical tool to obtain the approxima
tion of material parameters for nonlinear problems. However, compu
tational difference between the multi-core CPU 4D-LSM and GPU 4D- 
LSM handicaps the full CPU and GPU heterogeneous parallelization of 

Fig. 17. Results of the notched plate with hole problem predicted by the multi-core CPU 4D-LSM: (a) displacement versus reaction force and (b) crack patterns at 
different stages (red refers to broken particles in tension and green refers broken particles in compression). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 

Fig. 18. Comparison between the experimental and numerical results (a) experimental result,27 (b) numerical result predicted by anisotropic phase models,27 (c) 
numerical result predicted by the multi-core CPU DLSM, and (d) numerical result predicted by the multi-core CPU 4D-LSM. 
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the 4D-LSM. Future work to eliminate this digital difference is required 
to fully utilize the computational resources provided in modern work
stations, where both multi-core CPU and GPU are computationally 
powerful. 
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Appendix B. Pseudocode of the multi-core CPU 4D-LSM   

G.-F. Zhao et al.                                                                                                                                                                                                                                 



International Journal of Rock Mechanics and Mining Sciences 133 (2020) 104361

15

Appendix C. Pseudocode of the GPU 4D-LSM    
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Appendix D. Pseudocode of the CPU and GPU 4D-LSM

References 

1 Zhao GF. Developing a four-dimensional lattice spring model for mechanical 
responses of solids. Comput Methods Appl Mech Eng. 2017;315:881–895. 

2 Hrennikoff A. Solution of problems of elasticity by the framework method. J Appl 
Mech. 1941;8:A169–A175. 

3 Tang C. Numerical simulation of progressive rock failure and associated seismicity. 
Int J Rock Mech Min. 1997;34(2):249–261. 

4 Kakouris EG, Triantafyllou SP. Phase-field material point method for brittle fracture. 
Int J Numer Methods Eng. 2017;112(12):1750–1776. 

5 Espinha R, Park K, Paulino GH, Celes W. Scalable parallel dynamic fracture 
simulation using an extrinsic cohesive zone model. Comput Methods Appl Mech Eng. 
2013;266(11):144–161. 

6 Xu XP, Needleman A. Numerical simulations of fast crack growth in brittle solids. 
J Mech Phys Solid. 1994;42(9):1397–1434. 

7 Wu Z, Fan L, Liu Q, Ma G. Micro-mechanical modeling of the macro-mechanical 
response and fracture behavior of rock using the numerical manifold method. Eng 
Geol. 2017;225(20):49–60. 

8 Ooi ET, Yang ZJ, Guo ZY. Dynamic cohesive crack propagation modelling using the 
scaled boundary finite element method. Fatigue Fract Eng M. 2012;35(8):786–800. 

9 Radovitzky R, Seagraves A, Tupek M, Noels L. A scalable 3d fracture and 
fragmentation algorithm based on a hybrid, discontinuous galerkin, cohesive 
element method. Comput Methods Appl Mech Eng. 2011;200(1–4):326–344. 

10 Papadrakakis M, Stavroulakis G, Karatarakis A. A new era in scientific computing: 
domain decomposition methods in hybrid cpu-gpu architectures. Comput Methods 
Appl Mech Eng. 2011;200(13–16):1490–1508. 

11 https://www.intel.com/content/www/us/en/products/processors.html. accessed on 
12/04/2017. 

12 https://developer.nvidia.com/cuda-zone. accessed on 12/04/2017. 
13 http://www.openmp.org/. accessed on 12/04/2017. 
14 Takahashi T, Hamada T. Gpu-accelerated boundary element method for helmholtz’ 

equation in three dimensions. Int J Numer Methods Eng. 2009;80(10):1295–1321. 
15 Ta T, Choo K, Tan E, Jang B, Choi E. Accelerating dynearthsol3d on tightly coupled 

cpu-gpu heterogeneous processors. Comput Geosci. 2015;79(C):27–37. 
16 Dong Y, Wang D, Randolph MF. A gpu parallel computing strategy for the material 

point method. Comput Geotech. 2015;66:31–38. 
17 Hazeghian M, Soroush A. Dem simulation of reverse faulting through sands with the 

aid of gpu computing. Comput Geotech. 2015;66(52):253–263. 
18 Yue X, Zhang H, Ke C, et al. A gpu-based discrete element modeling code and its 

application in die filling. Comput Fluids. 2015;110:235–244. 
19 Zhao G-F. Discrete Element Model and High Performance Computing. ISTE & Elsevier; 

2015. ISBN 978-1-78548-031-7. 
20 Cercos-Pita JL. Aquagpusph, a new free 3d sph solver accelerated with opencl. 

Comput Phys Commun. 2015;192:295–312. 
21 Fu X, Sheng Q, Zhang Y, Chen J. Investigation of highly efficient algorithms for 

solving linear equations in the discontinuous deformation analysis method. Int J 
Numer Anal Methods GeoMech. 2015;40(4):469–486. 

22 Zhao G-F, Fang J, Zhao J. A 3D distinct lattice spring model for elasticity and 
dynamic failure. Int J Numer Anal Methods GeoMech. 2011;35:859–885. 

23 Liu Q, Wang W, Ma H. Parallelized combined finite-discrete element (fdem) 
procedure using multi-gpu with cuda. Int J Numer Anal Methods GeoMech. 2020;44 
(2):208–238. 

24 Lisjak A, Mahabadi OK, He L, et al. Acceleration of a 2d/3d finite-discrete element 
code for geomechanical simulations using general purpose gpu computing. Comput 
Geotech. 2018;100:84–96. 

G.-F. Zhao et al.                                                                                                                                                                                                                                 

http://refhub.elsevier.com/S1365-1609(20)30447-0/sref1
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref1
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref2
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref2
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref3
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref3
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref4
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref4
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref5
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref5
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref5
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref6
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref6
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref7
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref7
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref7
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref8
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref8
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref9
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref9
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref9
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref10
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref10
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref10
https://www.intel.com/content/www/us/en/products/processors.html
https://developer.nvidia.com/cuda-zone
http://www.openmp.org/
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref14
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref14
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref15
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref15
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref16
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref16
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref17
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref17
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref18
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref18
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref19
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref19
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref20
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref20
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref21
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref21
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref21
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref22
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref22
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref23
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref23
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref23
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref24
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref24
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref24


International Journal of Rock Mechanics and Mining Sciences 133 (2020) 104361

17

25 Zhao G-F, Fang J, Sun L, Zhao J. Parallelization of the distinct lattice spring model. 
Int J Numer Anal Methods GeoMech. 2013;37(1):51–74. 

26 Zhao G-F, Deng Z-Q, Zhang B. Multibody failure criterion for the four-dimensional 
lattice spring model. Int J Rock Mech Min Sci. 2019;123:104126. 

27 Ambati M, Gerasimov T, Lorenzis L. A review on phase-field models of brittle 
fracture and a new fast hybrid formulation. Comput Mech. 2015;55(2):383–405. 

28 Jiang C, Zhao G-F, Khalili N. On crack propagation in brittle material using the 
Distinct Lattice Spring Model. Int J Solid Struct. 2017;118–119:41–57. 

G.-F. Zhao et al.                                                                                                                                                                                                                                 

http://refhub.elsevier.com/S1365-1609(20)30447-0/sref25
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref25
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref26
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref26
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref27
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref27
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref28
http://refhub.elsevier.com/S1365-1609(20)30447-0/sref28

	Parallel implementation of the four-dimensional lattice spring model on heterogeneous CPU-GPU systems
	1 Introduction
	2 Parallelization of 4D-LSM
	2.1 4D-LSM
	2.2 Parallelization strategy
	2.3 Serial implementation
	2.4 Multi-core CPU parallel implementation
	2.5 GPU parallel implementation
	2.6 CPU-GPU parallel implementation

	3 Numerical examples
	3.1 Deformation of a table under pressure
	3.2 Elastic buckling of a bar
	3.3 Surface cracking of a notched sphere
	3.4 Deformation of a cube under gravity
	3.5 Performance analysis using cubes with different sizes
	3.6 Crack propagation of a notched plate with hole under tension

	4 Conclusions
	Declaration of competing interest
	Acknowledgements
	Appendix E Supplementary data
	Appendix A Pseudocode of the CPU 4D-LSM
	Appendix B Pseudocode of the multi-core CPU 4D-LSM
	Appendix C Pseudocode of the GPU 4D-LSM
	Appendix D Pseudocode of the CPU and GPU 4D-LSM
	References


