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A B S T R A C T

This paper further extends the ability of the distinct lattice spring model (DLSM) to predict quasi-brittle crack
propagation in concrete. In contrast to brittle crack propagation, most experimental results confirm that the
crack propagation in concrete is quasi-brittle. The DLSM was originally developed to study the brittle fracturing
of rock. Whether and how it could be applied to quasi-brittle crack propagation has not been systematically
studied. In this work, considering aspects of the geometric non-uniformity, material heterogeneity and micro-
mechanical constitutive model, the ability of the DLSM to solve quasi-brittle crack propagation has been sys-
tematically investigated. The main contributions of this work are that it (1) confirmed the necessary for the
DLSM to have a new micro-mechanical constitutive model to solve the quasi-brittle crack propagation problem;
(2) established a new micro-mechanical constitutive model for quasi-brittle crack propagation; and (3) proposed
a formula for the relationship between the micromechanical and macroscopic material parameters of the con-
crete. The new micromechanical constitutive model proposed in this paper has been systematically verified by
three-point bending experimental results of various grades of concrete. Finally, the new constitutive model has
been adopted to analyse the cracking of the concrete lining.

1. Introduction

Concrete is commonly used in underground engineering projects,
and its cracking is closely related to the safety and durability of these
projects. Strong external environmental changes, such as earthquakes
and severe weather changes, may cause cracks in underground concrete
structures, reducing its resistance and affecting its stability and safety
(Mridha and Maity, 2014). Effectively estimating and predicting the
crack initiation and propagation in concrete can better evaluate the
stability and safety of underground engineering projects. Researchers
have conducted numerous numerical and physical experiments on crack
propagation in concrete (e.g., Huang, 2018; Zhu et al., 2002; Tang
et al., 2015; Ooi et al., 2017). In contrast to traditional brittle crack
propagation, both physical experiments and field observations have
confirmed that crack propagation in concrete is highly nonlinear. For
example, crack initiation and propagation in the concrete gravity dams
demonstrate significant quasi-brittle properties, i.e. microcracking, in-
clusion toughening, surface roughness, and strain softening (Jenq and
Shah, 1991, Omidi et al., 2013, Edalat-Behbahani et al., 2017, Wang
et al., 2017a). This nonlinear cracking behaviour is called quasi-brittle

crack propagation.
Numerical methods for quasi-brittle crack propagation in concrete

can be divided into damage mechanics-based methods (Ghrib and
Tinawi, 1995; Lee and Fenves, 1998; Calayir and Karaton, 2005; Omidi
and Lotfi, 2013; Omidi et al., 2013) and fracture mechanics-based
methods (Guanglun et al., 2000; Mirzabozorg and Ghaemian, 2005; Pan
et al. 2011). Damage mechanics-based methods, such as the smear
cracking method (Léger and Leclerc, 1996) and the plastic damage
coupled model (Ghrib and Tinawi, 1995; Omidi et al., 2013), do not
explicitly capture the crack surface but present the crack as the ultimate
result of damage accumulation by using strain softening constitutive
relations (Wang et al., 2017a). For example, in the smeared crack
method (SCM) (de Borst, 2002), it is assumed that the length of the
cracking process is related to the finite element size, the computational
grid is set to remain constant, and the results are independent of the
finite element mesh refinement. If the continuity of the displacement
field does not reflect the discontinuous properties of the crack dis-
placement, the SCM cannot predict the exact locations and propagation
of the discrete cracks (Edalat-Behbahani et al., 2017). In addition, the
SCM has the disadvantage of stress locking. To solve this problem, it is
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necessary to introduce the shear transfer coefficient and keep the
cracking direction and the main stress-strain direction consistent (Rots,
1991). The fracture mechanics-based method (Calayir and Karaton,
2005, Wang et al., 2017a, Huang, 2018) is a discrete crack method for
solving crack propagation. This method can explicitly represent the
discontinuous displacement field but must track the evolution of in-
dividual cracks (Wang et al., 2017a). Overall, when these methods are
implemented with the finite element method (FEM), they usually ex-
hibit problems related to the complex re-meshing and inability to
capture the stress singularity at the crack tip (Huang, 2018). The ex-
tended finite element method (XFEM) (Belytschko and Black 1999,
Daux et al., 2000; Stolarska et al., 2001) can solve these problems;
however, because of the special integration technology, it is much more
computationally intensive than the traditional FEM, and its im-
plementation in 3D is very complicated.

With the development of computer science, in recent years, re-
searchers have paid more attention to discrete numerical methods.
These methods have successively demonstrated various advantages in
solving crack propagation problems. For example, they can naturally
express complicated dynamic cracking patterns, multiple crack inter-
sections and three-dimensional crack propagation (e.g., Jiang et al.,
2017). The discrete element method (DEM) is the representative
method (Cundall, 1971; Potyondy and Cundall, 2004). The DEM has
been used to study the crack propagation in concrete (Haeri et al.,
2018), but its parameter selection still poses a problem (Kazerani and
Zhao, 2010, Zhao et al., 2019). To solve this issue, Zhao et al. (2011)
developed a new discrete method called the distinct lattice spring

model (DLSM). In the DLSM, they introduced a multi-body shear spring
to solve the Poisson’s ratio limitation in the classical Lattice Spring
Model (LSM). Because the rotation of each particle is characterized by
the deformation of the particle’s local cluster, unlike in the DEM, each
particle has only half a degree of freedom. Therefore, the DLSM has a
higher computational efficiency and is suitable for parallel computing
(Zhao et al., 2013; Zhao and Khalili, 2012). The DLSM was originally
proposed to solve problems involving the brittle failure of rock (Zhao
et al., 2011) and has subsequently been used for dynamic crack pro-
pagation (Kazerani et al., 2010; Wang et al., 2017b). The ability of
DLSM to solve crack propagation problems has been quantitatively
compared with classical fracture mechanics and physical tests (Jiang
et al., 2017). Recently, Zhao and Xia (2018) adopted the DLSM to study
dynamic self-similar cracks, and the numerical results were consistent
with analytical solutions and experimental results. The DLSM has de-
monstrated some advantages in solving crack propagation problems;
however, no work has yet to be performed on the quasi-brittle crack
propagation in concrete.

In this work, the ability of the original DLSM to solve quasi-brittle
crack propagation in concrete is investigated and further developed.
First, the ability of the DLSM to reproduce the experimental results of
the three-point bending test of concrete was studied by considering
factors such as the geometric non-uniformity, material heterogeneity
and micro-mechanical constitutive model. Following this, a new mi-
cromechanical constitutive model for quasi-brittle crack propagation is
developed for the DLSM by further integration of a well-known cohe-
sive zone model (CZM) for concrete and the brittle constitutive model

Fig. 1. Basic principles and components of concrete characterized by the 2D DLSM.
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of the DLSM. Formulas that describe the relationship between the mi-
cromechanical parameters and the macroscopic material parameters
are derived and can be used to determine the micromechanical para-
meters in a more convenient way. The newly developed quasi-brittle
constitutive model of the DLSM is further verified against three-point
beam bending tests, in which specimens were made of concrete of
various grades. Finally, the new constitutive model is further adopted to
study the cracking pattern of concrete lining of different grades under
various in situ stresses.

2. The DLSM for quasi-brittle crack propagation

This section introduces the extension of the DLSM to solve the quasi-
brittle crack propagation in concrete. In this work, an explicit 2D DLSM
is adopted, the basic principle and components of which are shown in
Fig. 1. The LSM did not attract much attention when it was first de-
veloped in 1941. In the 1960s, it captured researchers’ interests due to
its ability to solve problems on the fracturing of concrete through re-
placing the spring element with a beam-like element. Unlike the tra-
ditional continuum mechanics approaches, the way that the LSM re-
presents concrete is shown in Fig. 1a, in which the aggregate and
mortar are explicitly represented by a number of smaller particles that
are linked by springs. Nevertheless, the LSM with a beam element still
requires an upper bound value of Poisson’s ratio, namely, 0.25 for 3D
elastic problems and 0.33 for plane strain elastic problems (Zhao et al.,
2011, Zhao, 2017). Moreover, the introduction of beam elements would
result in the failure constitutive model and micromechanical para-
meters becoming too complex and difficult to determine. The DLSM was
developed to address these problems. It should be mentioned that the
DLSM (Zhao et al., 2011) was initially developed for 3D mechanical
problems. The DLSM can use lattice models with arbitrary configura-
tions, i.e., both regular and irregular lattices can be used. However, for
crack propagation, the 2D DLSM has a higher computing efficiency than
the 3D DLSM with the current available computing resources (Jiang
and Zhao, 2018). The regular lattice configuration shown in Fig. 1c has
been tested and verified comprehensively, and it has been proven to be
able to solve linear elastic problems correctly (Jiang and Zhao, 2018).
Therefore, this lattice configuration is adopted in this work. As shown
in Fig. 1d, in the DLSM, interactions between two particles are re-
presented by a normal spring and a shear spring. The cracking of
concrete is well characterized by the progressive failure of these
springs.

2.1. The constitutive model

The original constitutive model in the DLSM is a brittle model.
Considering the coupling between the normal spring and the shear
spring, this constitutive model can be written as
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where fn is the normal spring force; kn is the normal spring stiffness; un
is the normal spring deformation; fs is the shear spring force; ks is the
shear spring stiffness; us is the shear spring deformation; u *n is the ul-
timate deformation value of the normal spring; u*s is the ultimate de-
formation value of the shear spring; and u| |s is the absolute deformation
value of the shear spring.

This model can be represented as two three-dimensional surfaces. In
practice, if only the failure of the normal spring is considered, i.e.,

= ∞u*s , this model can be simplified as a two-dimensional curve. The
basic principle of CZM for handling crack propagation problems is si-
milar to that of the LSM. Therefore, we will borrow the idea developed
for the CZM to solve quasi-brittle crack propagation. Fig. 2 shows the
traditional bilinear CZM developed for the quasi-brittle crack propa-
gation in concrete. The model describes the relationship between the
crack surface stress and the crack opening displacement. The mathe-
matical expression is written as
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where σ u( ) is the cohesive stress and u is the opening degree of the
crack propagation surface. Its parameters can be fully determined by
three material parameters, i.e., the tensile strength of concrete σt ,
fracture energy GF and initial fracture energy Gf . According to the study
of Wittmann et al. (1988), the proportion of the intensity turning point
(β) is recommended to be 1/4. Both the tensile strength and fracture
energy can be determined from traditional mechanical experiments of
the concrete. Two characteristic crack opening values can be de-
termined by the tensile strength and the corresponding fracture en-
ergies, i.e., =u

G
σ1

2 f

t
and =

− −
uf

G β G
βσ

2[ (1 ) ]F f

t
. From these equations, it can

be seen that the maximum opening is independent of the size of the
numerical element and can be treated as a material constant. However,
a problem exists for this model: the loading and unloading modulus
corresponding to the initial crack opening are infinite (see Fig. 2),
which might induce some numerical instability problems. To overcome
this shortcoming, it is possible to include an initial elastic stage, called
the intrinsic CZM. However, for the FEM or other continuum-based
numerical methods (Wu et al., 2018b, a), the intrinsic CZM will cause
redundancy among the elastic parameters, i.e., two macroscopic elastic
parameters (elastic modulus and Poisson’s ratio) and two additional
micro-mechanical parameters (normal stiffness and shear stiffness) are
needed. This problem also exists in many numerical methods using a
similar methodology, e.g., the combined FEM/DEM developed by
Munjiza et al. For the DLSM, this problem can be resolved. Fig. 3 shows
a new constitutive model developed for quasi-brittle crack propagation
in the DLSM. The elastic part is the original brittle constitutive model of
the DLSM, and the remaining part is the quasi-brittle CZM, as shown in
Fig. 2. The new constitutive model has some interesting features. First,
the brittle part is related to the particle size, i.e., the deformation
limitation at the peak point is obtained by the following formula:

Fig. 2. The bilinear CZM for describing the quasi-brittle cracking of concrete.
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=u γ Dσ
E

*n
t

(4)

where u *n is the ultimate deformation value of the normal spring; γ is a
correction coefficient of approximately 1, which is suggested to be
approximately 0.8 for the nonlinear constitutive model (Li et al., 2019);
D is the mean particle size; σt is the uniaxial tensile strength; and E is
the elastic modulus. The ultimate tensile deformation of the new con-
stitutive model is expressed as
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The peak deformation can be further expressed by a coefficient,
which can be related to the ultimate deformation:
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The post-peak turning-point deformation can also be represented by
another non-dimensional coefficient:
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The damage function is adopted to represent the quasi-brittle con-
stitutive model as

= −f D D u k u(1 max( *, ( )))n n n n (8)

where fn is the normal spring force, D* is the maximum history damage
of the spring, and D u( )n is the damage function of current deformation.
Formula (8) can characterize the constitutive model of the normal
spring by considering the loading and unloading conditions. The da-
mage function of the quasi-brittle constitutive model in the DLSM is
further expressed as
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For the shear spring, the same damage function model D u( )s is
adopted. When considering the coupling between the normal spring
and the shear spring, the damage function of the spring bond made
from these two springs can be further written as

=D u u D u D u( , ) max( ( ), ( ))n s n s (10)

The quasi-brittle crack propagation constitutive model in the DLSM
represented by Eq. (10) can be graphically plotted as two 3D surfaces.
As shown in Fig. 4a, the quasi-brittle constitutive model is tent-like in
the normal and shear deformation spaces for the normal spring and the
shear spring. However, the damage mechanism of the shear spring is
still unclear and will not be considered in this paper. It should be noted
that considering the failure of only the normal spring, the DLSM was
shown to be able to describe both the Mode-I and mixed mode crack
propagation of brittle materials (Jiang et al. 2017). When considering
the failure of only the normal spring, Eq. (10) can be further simplified:

=D u u D u( , ) ( )n s n (11)

Here, the shear spring force can be obtained by the following equation:

= −f D D u k u(1 max( *, ( )))s n s s (12)

where fs is the shear spring force, ks is the shear spring stiffness, and us
is the shear spring deformation. Fig. 4b shows the two three-dimen-
sional surfaces of the quasi-brittle constitutive model in the DLSM with
considering only the normal spring failure. It should be noted that ig-
noring the shear spring failure does not mean that the shear spring does
not break (e.g., the shear spring could break when the normal spring
breaks).

2.2. Normal and multi-body shear springs

When the deformation between two particles is given, the corre-
sponding spring force can be obtained with Eqs. (8) and (12). De-
formation of the normal spring of the DLSM is consistent with that in
the traditional LSM. For example, if the displacements of two particles
are given as u v( , )i i and u v( , )j j , the normal deformation of the spring
from particle i to particle j can be expressed as

=
− − + − −

− + −
u

u u x x v v y y

x x y y

( )( ) ( )( )

( ) ( )
n

j i j i j i j i

j i j i
2 2

(13)

where x y( , )i i and x y( , )j j are the coordinates corresponding to the two
particles, respectively.

For the shear interaction between particles in the DLSM, the concept
of the multi-body shear spring was adopted. The basic concept is that
the shear deformation between two particles should be calculated by
the current deformation states among two particles, described by
themselves and a collection of their neighbours, rather than only by the
displacements of the two particles. Because multiple particles are in-
volved, the shear spring is called a multi-body shear spring. The ne-
cessity and mathematical proof of the multi-body shear spring were
demonstrated in detail in the original work of DLSM (Zhao et al., 2011).
For the 2D DLSM, when a particle is given, a particle cluster can be
formed by the particle and its direct neighbour particles. If a particle
location is given as (x,y), the displacement function of the cluster can be
approximated by a first-order function:

= + +
= + +

u a x b y c
v a x b y c

1 1 1

2 2 2 (14)

The coefficients of the displacement function (a b c a b, , , ,1 1 1 2 2 and
c2) can be obtained by solving a minimum problem of the following
quadratic function.
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where uj and vj are the current displacements of the particles and u~j and
v~j are the particle displacements corresponding to the displacement
approximation function:

Fig. 3. The new quasi-brittle constitutive model of the DLSM.
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Then, the corresponding coefficients can be obtained by the prin-
ciple of the least square method as
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The local strain of the particle cluster can be given as
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Supposing that the local strains corresponding to two particles
linked to a shear spring are ε ε ε( )xx i yy i xy i T, , , and ε ε ε( )xx j yy j xy j T, , , , re-
spectively; the strain state of the shear spring can be obtained as
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The corresponding multi-body shear deformation (vector) can be
expressed as
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where

(a) Constitutive model considering both normal and shear springs failure

(b) Constitutive model considering only normal failure
Fig. 4. Three-dimensional characterization of the quasi-brittle constitutive model considering the coupling of the normal and shear springs.
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The corresponding force (vector) of a multi-body shear spring
considering the quasi-brittle crack propagation in concrete can be fur-
ther characterized as:
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The normal spring force (vector) considering quasi-brittle crack
propagation is demonstrated as:
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2.3. Solution procedure

This paper intends to use the explicit solution, not the implicit 2D
DLSM (Zhao et al., 2012). The system equations are solved using
Newton’s second law. To obtain the quasi-static solution, local damping
is used, and the specific velocity iteration formula is given as follows.
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where
+( )u ̇i

t tΔ
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2 are the velocities of particle i in the x and y

directions at +t tΔ
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t
,

( ) are the components of
the unbalanced force of the particle in the x and y directions at t , tΔ is
the time step, α is the damping coefficient and is set as 0.6 in this paper,
and sgn(·) is a sign function given by the following formula:
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As the particle velocity updates, the corresponding particle dis-
placement can be updated as

⎧

⎨
⎩

= +

= +

+ +

+ +

( )

( )
u u u t

v v v t

̇ Δ

̇ Δ

i
t t

i
t

i
t

i
t t

i
t

i
t

( Δ ) ( )

( Δ ) ( )

t

t

Δ
2

Δ
2

(26)

2.4. Parameter selection

Unlike the traditional DEM, there is no calibration required in the
DLSM. For the 2D DLSM, the spring stiffness between two particles can
be given by the following formula for the plane stress problem.
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Similarly, for the plane strain problem,
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where Ei and Ej are the material elastic modulus corresponding to the
two particles, υi and υj are the Poisson’s ratios of particles i and j, and
α D2 is the geometric coefficient of the lattice model and is given by the
following equation:

=
∑

α
l

AΔ
D i2

2

(31)

where li is the length of the ith bond, A is the representative area of the
lattice model, and Δ is the unit thickness of the lattice model in the
third dimension.

The derivations of these equations are based on the hyperelasticity
analysis principle and the strain energy equivalence principle for the
lattice model and the corresponding continuum model. The derivation
and verification were demonstrated in detail in the original work on the
DLSM (Zhao et al., 2011). Compared with the original DLSM, the DLSM
with a quasi-brittle constitutive model includes two additional non-di-
mensional parameters δ1 and δ2 as well as the maximum tensile de-
formation ′un. Following the suggestion provided by Wittmann et al.
(1988) for the cohesive model shown in Fig. 2, the relationship between
the initial fracture energy and the fracture energy can be estimated as

=G ξ G2.5F f (32)

For concrete, ξ is approximately 1.0. By substituting Eq. (32) into
Eq. (5) and setting β to 0.25, the equation of the maximum normal
deformation can be given as follows:

′ = +
−

u γ D σ
E

G ξ G
σ

ϑ 2(16 3 )
4ϑn

t F F

t (33)

The corresponding two non-dimensional parameters can be further
simplified as
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and
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When the particle size and fracture energy for a concrete are given,
the corresponding parameters of the quasi-brittle constitutive model
can be determined by using these equations. There are two non-di-
mensional parameters ϑ and ξ to further adjust the numerical responses.
The purpose of introducing these adjusting parameters is to increase the
flexibility of the parameter selection of the DLSM. Eqs. (33)–(35) can
give a good estimation of the micromechanical parameters; however,
an actual numerical simulation in practice might be different from the
target experimental results. In this case, it is more convenient to adjust
these dimensionless parameters, which are approximately one. Here,
the role of ϑ is to increase the microscopic tensile strength by a factor.
Taking the mesoscopic tensile strength greater than the macroscopic
tensile strength is commonly used in discrete numerical methods. From
Eqs. (33)–(35), it can be seen that when the fracture energy is zero, the
new constitutive model will simplify to the brittle constitutive model in
the original DLSM (Zhao et al., 2011). To consider the material het-
erogonous, we use the single-parameter Weibull distribution function to
assign the maximum normal deformation. This specific distribution
function is as follows:

= − −f ς mς e( ) m ς1 m
(36)

where ς is a random number that satisfies the single-parameter Weibull
distribution function and m is a coefficient that controls the shape of the
distribution function. The larger m is, the more uniform and closer to 1
the distribution of the random number ς (Tang et al., 2015; Xu et al.,
2013; Wang et al., 2012; Zhu et al., 2002). A random number is gen-
erated for each spring bond, and the corresponding maximum spring
deformation considering the material heterogeneous is given as
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′ = ′u ςun i n, (37)

In an actual simulation, the parameter selection can start by setting
both the non-dimensional parameters ϑ and ξ as 1. Then, the simulation
results can be compared with the target experimental values. The dif-
ference between the numerical results and the experimental results is
minimized by adjusting these non-dimensional parameters. Specific
examples will be described in the following sections.

3. Quasi-brittle cracking of concrete using the DLSM

In this section, the DLSM is tested and compared with the three-
point bending experimental results discussed in Dong et al. (2016) (the
specimen’s geometrical information can be seen in Fig. 5a), in which
the cracking data of concretes with different grades were recorded in
detail, especially the quasi-brittle crack propagation data recorded by
strain gauges attached at the crack tip (see Fig. 5b). In addition to the
typical curve of crack mouth opening displacement (CMOD) versus
loading (see Fig. 5c), the strain versus loading curve (Fig. 5d) was also
reported and can be used to obtain the loadings at crack initiation and
propagation, which is an effective way to describe the crack propaga-
tion of the quasi-brittle material. The material parameters of the con-
crete were recorded in detail as well. Table 1 lists the parameters of the
concretes with different grades; these parameters can be used to obtain
the micromechanical parameters of the DLSM using Eqs. (33)–(35).
Fig. 6 shows the computational model of the DLSM for the three-point
bending experiment, in which the dimensions of the model are identical
to those in the literature (see Fig. 5a). The boundary conditions are set
to allow one end to roll, while the other one is fixed (see Fig. 6). A

downward velocity load is applied to the middle of the upper surface of
the beam (see Fig. 6). Considering the numerical stability and compu-
tational cost, the loading velocity is taken as 1mm/s. In this work, the
time step for the three-point bending numerical experiment is ×1 10 - 7s.
The deformation of each iteration is approximately 0.1 nm, which can
ensure that the numerical results reflect the quasi-static state. Two
measuring points are used to record the histories of the horizontal
displacement of the crack surface; this information can be used to ob-
tain the CMOD.

= −CMOD t u t u t( ) ( ) ( )right left (38)

To be consistent with the strain gauge recording in the physical ex-
periment, a measuring point is placed 10mm away from the crack tip in
the computational model (see Fig. 6) to record the time history of the
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Fig. 5. The experimental setup and typical result of the three-point bending experiment for quasi-brittle crack propagation in concrete (Dong et al., 2016).

Table 1
The macroscopic parameters of the concretes with different grades (data from
Dong et al., 2016).

Concrete Elastic
modulus
E (GPa)

Poisson’s
ratio* υ

Density* ρ Tensile
strength
σ (MPa)t

Fracture
Energy
G (N/m)F

C20 29.9 0.2 2450 3.05 127.9
C40 32.2 0.2 2450 3.74 130.6
C60 35.7 0.2 2450 4.43 122.4
C80 38.1 0.2 2450 5.01 141.0
C100 41.4 0.2 2450 5.71 138.0

* Refers to the parameters not provided in the original literature; the clas-
sical value is used instead.
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Fig. 6. The computational model and boundary condition settings for the three-point bending experiment of concrete by using the DLSM.
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Fig. 7. The numerical simulation results of the original DLSM only considering the brittle constitutive model (unit in mm).
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horizontal strain. Additionally, the time histories of the loading dis-
placement and reaction force are simultaneously recorded with the
velocity boundary condition. In this way, the numerical simulation can
obtain results consistent with the corresponding physical experiment.

3.1. Brittle constitutive model

In this section, the original DLSM with the brittle constitutive model
is first used to simulate the three-point beam bending test using grade
C20 concrete. The corresponding material parameters, e.g., elastic
modulus and Poisson’s ratio, are shown in Table 1. The brittle

constitutive model has only one failure parameter ′un, which is eval-
uated at 4e−4mm, 6e−4mm, 8e−4mm and 10e−4mm. Fig. 7 shows
the influence of this failure parameter on the numerical simulation
results. The maximum loading force can be obtained from the curve of
the relationship between the CMOD and the loading force (see Fig. 7a).
A significant linear positive correlation was observed between the
maximum loading force and the failure parameter ′un. However, these
curves predicted by the DLSM have a distinct linear portion before
peaking and cannot accurately reproduce the pre-peak nonlinear
hardening curve as observed in the experiment (see Fig. 5c). For the
post-peak portion, although only the brittle constitutive model is used,

d=2

d=4

d=6

d=8

d=10

Fig. 8. Computational models with geometric non-uniformity, considering different aggregate/grain sizes (unit in mm).
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the post-peak portion of the CMOD and loading force curve shows a
certain slope with softening, rather than exhibiting a brittle drop. This
post-peak softening morphology should be related to the loading setting
of the three-point bending test. Fig. 7b shows the strain and loading
force curves. Unlike the typical dome-shaped curve observed in the
physical experiment results, there is no typical distinguishing feature
between the crack initiation loading and crack propagation loading in
the numerical simulation results, as shown in Fig. 5d. Therefore, it is
concluded that the original DLSM with a brittle constitutive model
cannot correctly characterize the cracking behaviour of concrete. A
homogenous model is adopted in this section. The influence of the
geometric non-uniformity will be investigated in the following section.

3.2. Geometric non-uniformity

This section will explore the influence of geometric non-uniformity

on the original DLSM when solving quasi-brittle crack propagation
problems. Fig. 8 shows the computational models considering the
geometric non-uniform distribution of the aggregate and mortar. The
elastic parameters of the aggregate are consistent with those of the
mortar, but their failure parameters are different. Different aggregate
sizes, i.e., 2 mm, 4mm, 6mm, 8mm and 10mm, are used to generate
these models (see Fig. 8). The failure parameter ′un of the aggregate is
set to −10e 4 mm, and that of the mortar is set to −6e 4 mm. The si-
mulation results are shown in Fig. 9 with the results of homogenous
models in which the material parameters were set to those of the mortar
and the aggregate, respectively. Fig. 9a shows the curve of CMOD
versus loading force. The aggregate size has a certain influence on the
numerical results. For a model with larger aggregate diameter, the si-
mulation results are closer to the results of the homogenous model with
the aggregate’s material properties, whereas for a model with a small
aggregate size, the results are between the results of homogenous
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Fig. 9. Numerical simulation results of the DLSM considering the geometric non-uniformity (unit in mm).
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models with the material properties of aggregate and mortar, respec-
tively. There is some disturbance in the pre-peak and post-peak portions
of the simulation results. However, there is no large difference from the
homogeneous model in terms of predicting the nonlinear pre-peak
shape of the CMOD versus loading force curve and the dome-shaped
curve of the strain versus loading force curve. Therefore, it is impossible
to reproduce the physical experimental observations merely by

including geometric non-uniformity in the original DLSM. The zigzag
phenomenon of the strain versus loading force curves as shown in
Fig. 9b should result from the suddenly released strain energy during
the fracturing process modelled by the brittle constitutive model.

m=2

m=3

m=5

m=10

m=20
Fig. 10. DLSM computational models considering the material heterogeneity.
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3.3. Material heterogeneity

Representing material heterogeneity by using a Weibull distribution
function is a classical method to address the realistic fracturing of rock
and concrete (Tang et al., 2015). As shown in Fig. 10, different com-
putational models are generated by assigning the random distribution

coefficient ς using the single parameter Weibull distribution function
with different m values. Fig. 11 shows the numerical results. The larger
the m value is, the greater the homogeneity of the computational model
and the closer the numerical results to the corresponding results of the
homogenous model.

Fig. 11a shows the CMOD and loading force curves. As the m value
increases, the corresponding peak loading increases. There is little
disturbance and nonlinearity in the pre-peak portion of the results of
the computational model with a smaller m value (refers to a greater
heterogeneity). However, this portion of the curve is still far from the
smooth nonlinear curve observed in the physical experiment. For the
post-peak portion of the curve, the material heterogeneity causes it to
be flatter and closer to the experimental observations, but a difference
still exists. For the strain and loading force curves, the influence of the
m value is reflected in the disturbance at the dome and a small dis-
turbance in the front part of the crack initiation loading, but
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Fig. 11. Numerical results of the DLSM with different material heterogeneities.

Table 2
Micro-mechanical parameters of the quasi-brittle constitutive model for C20
concrete.

Index D (mm) ϑ* ξ* ′u (mm)n δ1 δ2

1 1 1.0 1.0 0.2019 0.0004 0.1075
2 1 1.0 0.5 0.1154 0.0007 0.3754
3 1 1.5 0.5 0.0770 0.0016 0.3760

* The values need to be calibrated.

Q. Li, et al. Tunnelling and Underground Space Technology 92 (2019) 103061

12



morphology consistent with the physical experimental observation still
cannot successfully be reproduced.

3.4. Quasi-brittle constitutive model

In this section, the new quasi-brittle constitutive model is used to
reproduce the experimental results of the C20 concrete specimen. The
micromechanical parameters, the maximum normal deformation and
two non-dimensional coefficients are calculated using Equations
(33)–(35) and are listed in Table 2, in which the two non-dimensional
adjusting parameters, ϑ and ξ , are set to different values. From Table 2,
it can be seen that the ratio of the post-peak portion to the pre-peak
portion of the corresponding micromechanical constitutive model is
very high. Therefore, the main part of the curve is still the post-peak
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Fig. 12. Numerical simulation results of the DLSM with a new quasi-brittle constitutive model.

Table 3
Micro-mechanical parameters of the quasi-brittle constitutive model of the
concretes with different grades.

Concrete ′u (mm)n δ1 δ2

C40 0.0639 0.0021 0.3763
C60 0.0655 0.0023 0.3764
C80 0.0473 0.0033 0.3771
C100 0.0469 0.0035 0.3772
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portion, and the influence of the elastic portion on the fracture energy
can be ignored. When the particle size is large, the elastic portion en-
ergy would be large; however, it still needs to be ignored to make the
DLSM particle size insensitive for the quasi-brittle cracking.

Fig. 12a shows the CMOD versus loading curve predicted by the
quasi-brittle constitutive model. The nonlinear hardening character-
istics of the pre-peak portion are consistent with those of the experi-
mental results. Nevertheless, the numerical peak loading force is low
compared to its experimental counterpart. The numerical peak loading
force can gradually approach the experimental observed value by ad-
justing the two non-dimensional parameters ϑ and ξ . Through a number
of trials, in this work, the two non-dimensional parameters are found to
be =ϑ 1.5 and =ξ 0.5. Fig. 12b shows the curve of the strain versus
loading force. The dome morphology is well reproduced, and the

corresponding crack initiation loading and crack propagation can also
be well distinguished. It should be mentioned that no qualitative
comparison could be made because Dong et al. (2016) did not provide
detailed information on their strain versus loading force curve, e.g.,
which test it belongs to.

3.5. Verification

In this section, the ability of the DLSM with a new quasi-brittle
constitutive model to predict cracking in concrete is further verified.
Dong et al. (2016) reported a large number of CMOD versus loading
force curves for concrete specimens with different grades. The max-
imum loading force and the corresponding critical CMOD can be ex-
tracted from the literature. These two indicators are used as a
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comparison target to further check the predictive ability of the DLSM.
These calibrated ϑ and ξ for the C20 concrete are further adopted for
calculating all the micro-mechanical parameters from the three-point
bending experiment of concretes with different grades (see Table 3).
Therefore, we did not process any calibration in this section. Fig. 13
shows a comparison between the numerical prediction and the corre-
sponding experimental value. Three-point bending testing of concrete

specimens was carried out many times for each grade, and the experi-
mental results have a certain dispersion. The material parameters given
by Dong et al. (2016) should be based on statistical averages. Therefore,
as shown in Fig. 13, the numerical predicted value is approximately the
mean value of the experimental results. This further validates the ef-
fectiveness of the new quasi-brittle constitutive model developed for
the DLSM to predict quasi-brittle crack propagation.

4. Cracking of the concrete lining

Concrete lining is commonly used in underground engineering
projects. A concrete lining can provide intuitive security and aesthetics,
but if the concrete lining cracks, it could increase the feeling of in-
security. Classical methods for studying concrete lining cracking are
analytical and experimental methods. However, analytical methods can
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Fig. 14. The physical experiment and numerical model of the concrete lining.

Table 4
Micro-mechanical parameters of the concrete lining.

Concrete D (mm) ′u (mm)n δ1 δ2

C60 50 0.0664 0.1122 0.4451
C100 50 0.0598 0.1384 0.4615
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Fig. 15. Failure morphology comparison between the numerical prediction and the experimental result.
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Fig. 16. Failure morphology of the C60 concrete lining under the different vertical and horizontal in situ stresses.
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only address concrete lining of an ideal shape with a simple cracking
criterion. This approach is incapable of handling the nonlinear cracking
behaviour of concrete. A physical test can investigate the cracking
morphology of the concrete lining with a complicated shape; however,
in addition to the inability to apply a higher confining pressure due to
the limits of the testing equipment, the interaction between the rock
masses and the concrete lining is difficult to fully consider. Numerical
simulation has certain advantages over other methods of study in terms
of handling complex geometry and constitutive models. Here, the
ability of the new quasi-brittle constitutive model to predict the crack
propagation of the concrete lining is checked against experimental
testing of the concrete lining, as shown in Fig. 14a (Zhu et al., 2004).
The computational model of the loading experiment for the concrete
lining is established and shown in Fig. 14b. The computational model
dimensions are shown in Fig. 14b, and the selected material is C60
concrete. Since the numerical simulation in this section is quantitative
and does not require high precision, a coarser model is used. By setting
the particle diameter to a specific value ( =D 50 mm), the corre-
sponding micro-mechanical parameters (Table 4) can be obtained by
using Eqs. (33)–(35), and the corresponding macroscopic parameters of
C60 concrete are shown in Table 1. According to the diagram of the
actual physical experiment, the motion fixed in the vertical direction on

the lower end face of the model is set as a fixed boundary condition, and
a load velocity of 5mm/s is applied to its upper end face. Zhu et al.
(2004) only described the lining failure morphology from the experi-
ment. Fig. 15 shows a comparison between the failure morphology
predicted by the DLSM and the corresponding physical observation. The
numerical prediction results show that the top of the lining cracked
first, then both sides cracked, and finally, the bottom cracked. The crack
morphology and sequence of the simulation prediction are in good
agreement with those of the physical test. Therefore, the proposed new
quasi-brittle crack constitutive model in the DLSM can reasonably si-
mulate the cracking of the concrete lining. On this basis, a computa-
tional model considering the interaction between the lining and rock
mass is established (Fig. 14c). The material of the rock mass is granite,
and the selected material parameters are typical values, i.e., the elastic
modulus is 80 GPa, Poisson’s ratio is 0.2, and density is 2450 kg/m3. The
granite is assumed to be in an elastic state, and only the failure of
concrete is permitted in the numerical simulation. The influence of the
in situ stress magnitude and direction on the failure of the concrete
lining is studied by a computational model with different horizontal
and vertical load velocities (see Fig. 14c). In the simulation, the mag-
nitude of the in situ stress can be obtained by dividing the reaction force
on the velocity boundary with the boundary length. For all the
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Fig. 17. Failure morphology of the C100 concrete lining under the different vertical and horizontal in situ stresses.
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simulations, the maximum in situ stress is controlled to be less than
60MPa. Therefore, for a C60 concrete lining, the compressive failure of
the concrete lining is not considered. The ratio of the horizontal in situ
stress to the vertical one is controlled by adjusting the velocities in both
directions, and the reference velocity is 5 mm/s. A coefficient λ is used
to represent the ratio of the horizontal stress to the vertical stress and is
the ratio of the horizontal velocity to the vertical velocity. The λ
coefficients of 1.0, 0.5 and 2.0 are investigated in this study. They re-
present cases of equal, vertical-dominant and horizontal-dominant in
situ stresses, respectively. Fig. 16 shows the failure morphologies of the
C60 concrete lining under different in situ stresses. When the in situ
stress is 30 MPa, the initial crack forms at the top of the lining. The
crack continues to propagate with the increase in the in situ stress,
which mainly concentrates at the top and bottom of the lining. When
the in situ stress increases to 56MPa, the lining is completely broken.
When the λ coefficient is 0.5, the vertical loading is dominant, and the
crack initiation position in the concrete lining is different. When the in
situ stress of 50 MPais applied, the cracking morphology is widely dis-
tributed. As the in situ stress increases to 51 MPa, the lining is com-
pletely broken. Therefore, the λ coefficient has a certain influence on
the cracking morphology of the concrete lining. A low horizontal in situ
stress would have an adverse effect on the cracking of the concrete
lining. When the λ coefficient is 2.0, the horizontal loading is dominant,
and the crack initiation location in the concrete lining is not con-
siderably different from the first two cases. However, when the in situ
stress of 40 MPa is applied, the lining is completely broken. Assuming
that the vertical in situ stress is calculated as hρg, where h is the depth
of the tunnel, the depth corresponding to 56MPa is approximately
2500 m. It can be concluded that the concrete lining might be unsuitable
for deep underground engineering. To further investigate whether a
higher grade of concrete will result in a better result, a computational
model is simulated with a concrete lining of C100 concrete. Fig. 17
shows the numerical results. Although the three-point bending re-
sistance of the high-grade concrete is higher, its in situ stress for lining
cracking is not significantly different from that of the C60 concrete. As
shown in Fig. 17, the cracking morphology of the C100 concrete lining
under high in situ stress is significantly reduced (compared with that of
the C60 concrete lining). Therefore, high-grade concrete is not good at
preventing initial cracking but is good when the ultimate safety re-
sistance is the main concern. From the numerical results, it is concluded
that the in situ stress has a decisive influence on the cracking pattern of
the concrete lining. In practice, the condition of the in situ stress could
also be estimated based on the cracking morphology of the concrete
lining. This example demonstrates that the quasi-brittle constitutive
model can be used to study the cracking of concrete lining in under-
ground engineering. Further research and development, into topics
such as three-dimensional cracking, dynamic crack propagation and
more detailed engineering scale verification, are necessary.

5. Conclusion

The DLSM is extended by the development of a new micro-
mechanical constitutive model to predict quasi-brittle crack propaga-
tion in concrete. Even with considering the geometric non-uniformity
and material heterogeneity, the original DLSM cannot reproduce the
nonlinearity of the pre-peak hardening portion of the CMOD versus
loading force curve and the dome morphology of the strain versus
loading force curve observed in physical experiments. This can be re-
solved by using the newly developed constitutive model, which has
three parameters, two of which are non-dimensional. In addition, a
mathematical relationship between the micro-mechanical parameters
of the model and the corresponding macroscopic material parameters of
the concrete is established. The new quasi-brittle crack propagation
model and parameter selection method have been proven to be ap-
plicable and effective from a detailed comparison between numerical
and experimental results from the literature. By comparing the three-

point bending experimental results, it is found that the constitutive
model can successfully reproduce the pre-peak nonlinear portion of the
loading and dome morphology of the strain-load curve. On this basis,
the cracking of concrete lining is studied by considering the interaction
between the in situ stress and concrete lining of different grades. The
concrete grade has little effect on the initial cracking of the lining but
has a significant impact on the ultimate failure of the lining. In addi-
tion, the direction of the in situ stress has a significant effect on the
crack morphology and location. Therefore, in practice, the in situ stress
of the tunnel might be estimated based on the crack morphology and
location in the concrete lining.
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