
High Performance Computing and the Discrete Element Model

Discrete Granular Mechanics Set
coordinated by

Félix Darve

High Performance

Computing and the
Discrete Element Model

Opportunity and Challenge

Gao-Feng Zhao

To Qin and Joseph

First published 2015 in Great Britain and the United States by ISTE Press Ltd and Elsevier Ltd

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the
CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the
undermentioned address:

ISTE Press Ltd Elsevier Ltd
27-37 St George’s Road The Boulevard, Langford Lane
London SW19 4EU Kidlington, Oxford, OX5 1GB
UK UK

www.iste.co.uk www.elsevier.com

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience
broaden our understanding, changes in research methods, professional practices, or medical treatment
may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and
using any information, methods, compounds, or experiments described herein. In using such information
or methods they should be mindful of their own safety and the safety of others, including parties for
whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any
liability for any injury and/or damage to persons or property as a matter of products liability, negligence
or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in
the material herein.

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does
not warrant the accuracy of the text or exercises in this book. This book’s use or discussion of

MATLAB® software or related products does not constitute endorsement or sponsorship by The

MathWorks of a particular pedagogical approach or particular use of the MATLAB® software.

For information on all our publications visit our website at http://store.elsevier.com/

© ISTE Press Ltd 2015
The rights of Gao-Feng Zhao to be identified as the author of this work have been asserted by him in
accordance with the Copyright, Designs and Patents Act 1988.

British Library Cataloguing-in-Publication Data
A CIP record for this book is available from the British Library
Library of Congress Cataloging in Publication Data
A catalog record for this book is available from the Library of Congress
ISBN 978-1-78548-031-7

Printed and bound in the UK and US

Foreword

Molecular dynamics is recognized as a powerful method in modern computational
physics. This method is essentially based on a factual observation: the apparent
strong complexity and extreme variety of natural phenomena are not due to the
intrinsic complexity of the element laws but due to the very large number of basic
elements in interaction through, in fact, simple laws. This is particularly true for
granular materials in which a single intergranular friction coefficient between rigid
grains is enough to simulate, at a macroscopic scale, the very intricate behavior of
sand with a Mohr–Coulomb plasticity criterion, a dilatant behavior under shearing,
non-associate plastic strains, etc. and, in fine, an incrementally nonlinear constitutive
relation. Passing in a natural way from the grain scale to the sample scale, the
discrete element method (DEM) is precisely able to bridge the gap between micro-
and macro-scales in a very realistic way, as it is today verified in many mechanics labs.

Thus, DEM is today in an impetuous development in geomechanics and in the
other scientific and technical fields related to grain manipulation. Here lies the basic
reason for this new set of books called “Discrete Granular Mechanics”, in which not
only numerical questions are considered but also experimental, theoretical and
analytical aspects in relation to the discrete nature of granular media. Indeed, from
an experimental point of view, computational tomography – for example – is giving
rise today to the description of all the translations and rotations of a few thousand
grains inside a given sample and to the identification of the formation of mesostructures
such as force chains and force loops. With respect to theoretical aspects, DEM is
also confirming, informing or at least precising some theoretical clues such as the
questions of failure modes, of the expression of stresses inside a partially saturated
medium and of the mechanisms involved in granular avalanches. Effectively, this set
has been planned to cover all the experimental, theoretical and numerical approaches
related to discrete granular mechanics.

viii High Performance Computing and the Discrete Element Model

The observations show undoubtedly that granular materials have a double nature, that
is continuous and discrete. Indeed, roughly speaking, these media respect the matter
continuity at a macroscopic scale, whereas they are essentially discrete at the granular
microscopic scale. However, it appears that, even at the macroscopic scale, the discrete
aspect is still present. An emblematic example is constituted by the question of shear
band thickness. In the framework of continuum mechanics, it is well recognized that this
thickness can be obtained only by introducing a so-called “internal length” through
“enriched” continua. However, this internal length seems to be not intrinsic and to
constitute a kind a constitutive relation by itself. Probably, it is because to consider the
discrete nature of the medium by a simple scalar is oversimplifying reality. However, in
a DEM modeling, this thickness is obtained in a natural way without any ad hoc
assumption. Another point, whose proper description was indomitable in a continuum
mechanics approach, is the post-failure behavior. The finite element method, which is
essentially based on the inversion of a stiffness matrix, which is becoming singular at a
failure state, meets some numerical difficulties to go beyond a failure state. Here also, it
appears that DEM is able to simulate fragile, ductile, localized or diffuse failure modes in
a direct and realistic way – even in some extreme cases such as fragmentation rupture.

The main limitation of DEM is probably linked today to the limited number of grains
or particles, which can be considered in relation to an acceptable computation time.
Thus, the simulation of boundary value problems stays, in fact, bounded by more or less
heuristic cases. So, the current computations in labs involve at best a few hundred
thousand grains and, for specific problems, a few million. Let us note however that the
parallelization of DEM codes has given rise to some computations involving
10 billion grains, thus opening widely the field of applications for the future.

In addition, this set of books will also present the recent developments occurring
in micromechanics, applied to granular assemblies. The classical schemes consider a
representative element volume. These schemes are proposing to go from the
macro-strain to the displacement field by a localization operator, then the local
intergranular law relates the incremental force field to this incremental displacement
field, and eventually a homogenization operator deduces the macro-stress tensor
from this force field. The other possibility is to pass from the macro-stress to the
macro-strain by considering a reverse path. So, some macroscopic constitutive
relations can be established, which properly consider an intergranular incremental
law. The greatest advantage of these micromechanical relations is probably to
consider only a few material parameters, each one with a clear physical meaning.

This set of around 20 books has been envisaged as an overview toward all the
promising future developments mentioned earlier.

Félix Darve
July 2015

Preface

The classical continuum theory can adequately describe the macroscopic
mechanical response of most artificial materials. However, this theory breaks down
when facing critical problems in geomechanics (e.g. progressive failure and strain
localization) because of the discontinuous nature of rock masses and granular soils.
To tackle these problems, discontinuum-based models, for example the discrete
element model (DEM), have been developed. The DEM has been increasingly
applied to many geomechanical problems encountered in civil, mining, hydropower
and petroleum engineering. Despite many advantages, the high computational
requirement is one of the main drawbacks of this method. Modern computers have
provided powerful hardware platforms for high performance computing; however,
existing DEM codes are usually programmed serially, hindering the ability to fully
use modern computing resources. A parallel DEM code is therefore needed. This
book describes the parallel implementation of a DEM code and covers a wide scope
for DEM (from algorithms to modeling techniques and engineering applications).
This book will be a valuable reference for researchers interested in geomechanics
and discontinuum-based models.

Gao-Feng Zhao
July 2015

Introduction

The discrete element model (DEM) has become a popular numerical tool in both
scientific research and engineering applications. Despite many advantages, high
computational requirement is one of the primary drawbacks of the method
[CUN 01]. Modern computers have provided powerful hardware platforms for High
Performance Computing (HPC); however, existing DEM codes are usually
programmed in a serial manner, making them unable to use modern computing
resources fully. Thus, a parallel DEM code is usually required.

I.1. Discrete element model

The DEM was first introduced by Cundall [CUN 71] to solve problems in rock
mechanics. After being developed for nearly half a century, it has been applied to
much broader areas, for example granular flow [WAL 09], fracturing of rock [LIS
14], unsaturated soil [LIU 03], chemical engineering [ZHU 08] and self-assembly
[FAN 11]. The reasons for its popularity are as follows: (1) the simulation is closer
to the physical world compared to the continuum mechanics-based models; and (2)
the underlying principle is straightforward and easily understood. The methodology
of the DEM can be simply interpreted as representing the behavior of matter through
interactions of an assembly of rigid or deformable blocks/particles/bodies under
given governing physical laws. For example, the calculation core of the widely used
DEM for mechanical analysis is shown in Figure I.1.

As shown in the figure, given particle displacements (either prescribed initially
or obtained from the previous time step), particle forces are calculated according to
the corresponding constitutive models. Then, the particle’s motion state (velocity,
acceleration and position) is updated according to Newton’s second law of motion.

xii High Performance Computing and the Discrete Element Model

Then, the velocities are updated as follows:

()
()

2 (2) F
u u

t
jt t t t

i i
p

t
m

Δ Δ Δ& &+ −= +∑ [I.1]

where (2)u t t
i

Δ& + and (2)u t t
i

Δ& − represent the particle velocities at 2t t+ Δ and
2t t−Δ , respectively; ()F t

j∑ is the total force applied to the particle i; pm is the
particle mass and tΔ is the time step.

Figure I.1. Calculation cycle of the DEM for mechanical analysis

The particle displacements are obtained as follows:

() () ()2t t t t t
i i i t+Δ +Δ= + Δu u u& [I.2]

where ()t t
i
+Δu and ()t

iu represent the displacement at t t+ Δ and t, respectively.

To simplify the implementation, MATLAB® was selected as the programming
environment in this book. A 45-line DEM code for Galileo’s Leaning Tower of Pisa
experiment is developed using equations [I.1] and [I.2]. As shown in Figure I.2, the
45-line DEM code is made from a preprocessor, a solver and a postprocessor. The
preprocessor is required to (1) build a particle model; (2) assign material parameters;
(3) provide initial condition; (4) apply loading conditions and (5) set the simulation
time, time step, etc. The solver performs iterations of the DEM calculation cycle, as

Introduction xiii

shown in Figure I.1. It is usually the most costly computational component of a
DEM code.

Figure I.2. A 45-line DEM code for Galileo’s Leaning Tower of Pisa experiment

Many researchers consider contact detection and contact treatment to be the most
distinct parts of a DEM code. However, the author believes that the constitutive
model of a DEM code is its spirit. First, the constitutive model covers contact
detection (e.g. when there are interactions between two particles) and contact

lenovo
高亮

lenovo
高亮

lenovo
附注
wood ball

lenovo
附注
wood ball

lenovo
附注
Y_Ball_Wood

xiv High Performance Computing and the Discrete Element Model

treatment (e.g. how should interaction forces between two particles be applied and
distributed?). Moreover, to address different problems, specific constitutive models
must be developed and implemented into the DEM. For example, a long-range
magnetic force model is needed for a magnetic self-assembling problem, a Coulomb
friction model is needed for granular flow simulation and a bond constitutive model
is necessary for the dynamic fracturing of rock. Therefore, the constitutive model is
the key component of a DEM solver. In actual application, the preprocessor is also
very important. From the point of view of a DEM user, the preprocessor is the
interface from the real world to the digital world. It transfers the user’s abstract ideas
or concepts into numerical models in the computer. In addition to the preprocessor,
the postprocessor is also a crucial component of a DEM code. It can be regarded as
the interface from the digital world to the real world. The results of DEM simulation
usually comprise massive data, for example particle positions and particle velocities.
To extract essential and easily understood information from the numerical results,
the user requires a postprocessor. For example, the postprocessor of the 45-line
DEM code plots the position histories of a steel ball and wood ball together with the
ground profile (Figure I.3). From the figure, the times when the two balls hit the
ground can be directly observed. The same conclusion that Galileo reached in 1589
can be easily achieved.

Figure I.3. Galileo’s Leaning Tower of Pisa experiment using the 45-line DEM code

Introduction xv

The 45-line DEM code is only a simple demonstrative example. To solve actual
problems in scientific research and engineering applications, the researchers need to
extend the code to handle thousands or even millions of particles governed by much
more complex constitutive models. This results in the cost of the actual DEM code
being computationally very high. Fortunately, modern computers provide HPC
solutions to tackle this problem.

I.2. Discrete element model and high performance computing

With the development of computer technology, the supercomputer of the past is
no longer super. Figure I.4 shows the computing performances of the world’s top
500 supercomputers and the author’s laptop (ThinkPad W540).

Figure I.4. Top 500 supercomputers and the author’s laptop (data obtained from
http://www.top500.org/ on 10 July 2014)

The laptop is found to be even faster than the world’s most powerful
supercomputer in 1992. However, running a serial DEM code on the laptop cannot
be considered as HPC. Therefore, in this book, HPC refers to parallel computing
rather than to its literal meaning. Here, HPC is synonymous with parallel computing,
which distributes a single computational task to several processors and executes the
distributed works simultaneously.

xvi High Performance Computing and the Discrete Element Model

Implementation of a parallel DEM code used to be a complex task; fortunately, with
the development of hardware and software technologies in computer science, it is now
much easier. Currently, three choices for parallelization of a code are available: the
multi-core computer, graphics processing unit (GPU) computer and cluster. The multi-
core computer is a personal computer (PC) that is equipped with multiple processors and
uses a shared-memory configuration. In addition to a specially designed shared-memory
supercomputer, modern PCs are usually typical multi-core computers. For example, the
author’s laptop is equipped with a central processing unit (CPU) of four processors and
has 8 GB physical memory. The GPU computer is another economic choice for HPC.
GPU computing is also called heterogeneous or GPU/CPU coupled computing. Its basic
principle is to calculate mathematically intensive tasks using a specially designed GPU
card rather than a CPU. The third choice is a high-level parallelization system called
cluster, which usually comprises many computer nodes (each node can be a multi-core
PC, a GPU computer or even a PlayStation). At present, cluster is still the only feasible
choice for very massive computing (e.g. more than billions of particles). In addition to
hardware platforms, the software programming environment is also an important factor
that has to be considered in the parallel implementation of a DEM code. The most
commonly used parallel techniques are the message passing interface (MPI), Open
Multi-Processing (OpenMP), compute unified device architecture (CUDA) and Open
Computing Language (OpenCL). Until now, parallel DEM codes have been developed
in various hardware platforms using these software programming environments and have
achieved considerable speedups (e.g. see Table I.1).

Literature Hardware Software Speedup
[DOW 99] Cluster (CM5, 64 processors) MPI 60
[ABC 04] Cluster (SGI Origin 3800, 108 processors) MPI ~80
[SCH 04] PC with FPGA cards OpenCL ~60
[MAK 06] Cluster (VILKAS, 16 processors) MPI ~11

[ZSA 09] Shared-memory supercomputer (SGI Origin
2000, 8 processors) OpenMP ~7

[KAC 10] Cluster (VILKAS, 10 processors) MPI 9
[MAR 11] Cluster (VILKAS, 48 processors) MPI ~32

[NIS 11] Shared-memory supercomputer (Altix 4700,
256 cores) OpenMP ~25.6

[ZHA 12] PC (NVIDIA GeForce GTX 580) CUDA 23
[ZHE 12] PC (GTX 580) CUDA 29
[ZHA 13b] Cluster (Pleiades 2, 256 processors) MPI 41
[GOP 13] Cluster (256 processors) MPI ~198
[WAN 13] PC (NVIDIA GTX 580) CUDA 417
[ZHA 13a] PC (NVIDIA GTS 250) CUDA 147
[ZHA 14] Shared-memory supercomputer (24 cores) OpenMP ~8

Table I.1. Parallelization of DEM in different hardware platforms
using various software programming environments

Introduction xvii

Parallelization of a DEM code is a typical interdisciplinary task that requires not
only deep understanding of the DEM but also some fundamental knowledge of
computer science. Existing literature, for example those listed works in Table I.1,
focuses only on some specific aspects of parallelization implementation of a DEM
code. Details on the implementation are usually not well explained. Moreover, some
parallel implementations of the DEM are too complex and betray the merit of the
DEM being easily understood. In this book, a DEM code will be implemented using
MATLAB as the programming environment. Then, the Parallel Computing
Toolbox® of MATLAB is adopted to parallelize the DEM code to different
platforms, that is multi-core PC, GPU computer and cluster.

This book comprises four chapters along with an introduction. Here, in the
introduction, DEM and HPC are presented with a discussion on the definition of
HPC and on the objectives and scope of the book. Chapter 1 focuses on the
implementation of a serial DEM code. Details of mathematical equations and
corresponding computational implementation are also covered in this chapter.
Chapter 2 presents multi-core parallelization of the serial DEM code developed in
Chapter 1. GPU parallelization of the DEM code is described in Chapter 3. Finally,
Chapter 4 introduces using DICE2D in a middle-sized cluster.

I.3. Conclusion

The DEM is becoming a popular research tool in many fields. Parallelization is
an essential step to overcome its computational limitation and fully use the power of
modern computers. Until now, many parallel DEM codes have been developed for
various hardware platforms using different parallel software programming
environments. Nevertheless, implementation details are usually not well described.
This book aims to provide the implementation details of a serial DEM code and its
parallelization to modern parallel computers

1

Serial Implementation

In this chapter, implementation details of a serial DEM code, DICE2D, are
described. The target is to provide a programming environment for further parallel
implementation of the DEM. Full aspects of DEM coding are covered, such as
system design, data structure design, flowchart design, algorithm design and
implementation. A number of benchmark examples are designed for verification and
debugging purposes.

1.1. System design

Unlike the modern commercial DEM codes, which use the object-oriented
design concept, DICE2D adopts the process-oriented design concept that is simple
to understand and suitable for algorithm research. To release the workload of
graphical user interface (GUI) design, MATLAB® was selected as the programming
environment. It provides a number of built-in functions to display the particles and
computational results. Moreover, the high interactive feature of MATLAB also
makes it a good choice for algorithm development and the study of the DEM. The
DEM aims to simulate the nature process; therefore, the code is named DICE2D. It
is inspired from Einstein’s comment on quantum mechanics: “…God does not throw
dice”. To run the code, the first step is to select a folder named DICE2D as the
current work directory (Figure 1.1). Then, type “D2D(iEx)” into the command
window to run the corresponding example.

Figure 1.2 shows the work flow of DICE2D. First, the user needs to input the
example ID. Then, the preprocessor will prepare the corresponding model data. The
numerical model will be further processed by the DEM solver to obtain the
simulation results, which will be finally processed by the postprocessor. Unlike most
commercial software, in DICE2D, users must build up their own pre- and
postprocessors to run a new example. The most convenient way is to modify the

2 High Performance Computing and the Discrete Element Model

existing pre- and postprocessor files. For example the user can modify the existing
preprocessor file to create different material parameters, loading conditions and
particle models. Details of the pre- and postprocessors can be found in the source
codes provided along with this book. In this chapter, the data structures and
algorithms of DICE2D are introduced. It is well known that the classical equation of
process-oriented design is Programs = Data Structures + Algorithms. Moreover,
understanding the data structures and algorithms of DICE2D will bring deep insight
into the work principle of the DEM.

Figure 1.1. DICE2D in MATLAB

1.1.1. Data structures

Two essential entities of the DEM are particles and walls (Figure 1.3). Particles
are usually used to represent the modeling target, such as a specimen and
engineering structure; walls are adopted for applying boundary conditions. In
DICE2D, the position, velocity, acceleration and forces of particles are defined as
one-dimensional arrays. To consider additional degrees of freedom (DOFs), for
example fluid flow or temperature, new arrays can be added. For walls, only

Serial Implementation 3

position and velocity are defined, which can be used to apply velocity boundary
conditions. For example if the velocities of a wall are set to zero, then the wall would
be fixed during the computation. To apply a stress boundary condition, additional
variables and treatments are needed. One example is presented in Chapter 3 to show
the work principle of stress-controlled walls for triaxial compression test simulation.
For convenience, material parameters of the particles and walls are defined
separately (Figure 1.4). To link a specific particle to the corresponding material
properties, a material ID of the particle or wall is adopted. For the particles and
walls, the parameters of the classical Mohr–Coulomb model are defined. In addition,
the viscous and stiffness parameters are defined on the particles; however, neither is
defined for the walls because they are assumed to be rigid.

Figure 1.2. Flowchart of DICE2D

In many DEM simulations, walls are sufficient for applying types of boundary
conditions. However, for some specific problems, precisely controlling the state of
particles is required. To fulfill this requirement in DICE2D, particle boundary
conditions are defined. The data structures are shown in Figure 1.5. These boundary
conditions are defined at the particle level, which can control the force and
displacement of a specific particle with a given ID. A special boundary condition
called a fixed spring boundary condition is defined to simulate a fixed spring-like
condition. The principle is to put a normal spring between the fixed point and the
particle center. These particle boundary conditions, together with the walls, equip
DICE2D with the ability to simulate problems that involve nonlinear deformation,
progressive failure and granular flow. Table 1.1 shows a few variables defined for
particles in DICE2D. Additional data structures of DICE2D are shown in Figure 1.6.
These additional parameters include the threshold value for contact detection, total
number of calculation cycles, measure point data, etc. These data are essential

lenovo
附注
If the walls are assumed to be rigid, why the parameters of the classical Mohr-Coulomb model are defined?

lenovo
高亮

lenovo
高亮

4 High Performance Computing and the Discrete Element Model

information for the preprocessor, solver and postprocessor. With these data
structures, the skeleton of DICE2D is ready. The next step is to update these
variables in each calculation cycle according to the DEM algorithms.

Figure 1.3. Data structure design of particles and walls

Variable Description
NumP Number of particles
X Vector of particles’ X coordinate (1 × NumP)
Y Vector of particles’ Y coordinate (1 × NumP)
R Vector of particles’ radius (1 × NumP)
T Vector of particles’ rotation (1 × NumP)
IDGX Vector of particles’ Grid ID in X direction
IDGY Vector of particles’ Grid ID in Y direction

Table 1.1. Variables defined for particles in DICE2D

Serial Implementation 5

Figure 1.4. Data structure of material list for the particle and the wall

1.1.2. Algorithms

The data flow diagram of the DEM solver is shown in Figure 1.7. The data of
particles and walls at time t are given first. Then, contact detection between particles
and walls is conducted to obtain the contact pair lists for calculating the particle
forces from the particle position and the constitutive models. The particle-to-particle
(P2P) constitutive model is used to calculate the force–deformation relationship
between particles, whereas the wall-to-particle (W2P) model is used to handle the
interactions between the wall and the particles. When the particle forces are

lenovo
附注
not rigid?

6 High Performance Computing and the Discrete Element Model

obtained, the state of particles at time t t+Δ can be updated according to Newton’s
second law of motion.

Figure 1.5. Data structures of particle boundary conditions

Figure 1.6. Data structures for control parameters of
preprocessor, solver and postprocessor

Serial Implementation 7

Figure 1.7. Data flow diagram of the DEM solver

In DICE2D, the mathematical equations of the velocity update of particles are as
follows:

2 2
x

t t t t i
i i

i

f
x x t

m
+Δ −Δ= + Δ& & [1.1]

2 2
y

t t t t i
i i

i

f
y y t

m
+Δ −Δ= + Δ& & [1.2]

2 2t t t t i
i i

i

f
t

I

θ

θ θ+Δ −Δ= + Δ& & [1.3]

8 High Performance Computing and the Discrete Element Model

where 2t t
ix +Δ& is the particle velocity in the x-direction at 2t t+ Δ ; 2t t

ix −Δ& is the
particle velocity in the y-direction at 2t t− Δ ; x

if is the particle force in the
x-direction at current time t; im is the mass of the particle and tΔ is the time step,
and other parameters in the y-direction and rotation direction are defined analogously.

The particle mass and moment of inertia can be obtained as follows:

2
i i iM Rρπ= [1.4]

2

2
i i

i
M RI = [1.5]

where iρ is the density and iR is the radius of the particle.

The updated positions of the particles are obtained as follows:

2t t t t t
i i ix x x t+Δ +Δ= + Δ& [1.6]

2t t t t t
i i iy y y t+Δ +Δ= + Δ& [1.7]

2t t t t t
i i i tθ θ θ+Δ +Δ= + Δ& [1.8]

These equations constitute the motion update core of the DEM solver, which can
easily be implemented. In Figure 1.7, the influence of the boundary condition was
not considered. For particles with prescribed boundary conditions, the motion can be
directly controlled by assigning the prescribed velocities or displacement. The
implementation of the constitutive model with contact detection is complex. As
mentioned in the Introduction, the constitutive model includes contact detection. To
explain the implementation straightforwardly, contact detection is introduced first.
In the following sections, the contact detection and the constitutive model developed
in DICE2D are described.

1.2. Contact detection

1.2.1. Simplified grid cell method

Many algorithms have been developed for contact detection of the DEM; details
on these methods can be found in the book by Munjiza [MUN 04]. In DICE2D, a
simplified grid cell method is used. Rather than storing the particle ID in a grid cell,

lenovo
高亮

Serial Implementation 9

the grid cell numbers are stored in each particle. For a given particle, its cell
numbers are assigned according to the following equations:

() ()()min max
ID

GridSize
i i ix

i

x x R
d

⎢ ⎥− −
= ⎢ ⎥
⎢ ⎥⎣ ⎦

 [1.9]

() ()()min max
ID

GridSize
i i iy

i

y y R
d

⎢ ⎥− −
= ⎢ ⎥
⎢ ⎥⎣ ⎦

 [1.10]

where GridSized is the grid cell size, which can be estimated as 2max()iR .
Between two particles, contact detection will first be checked if it satisfies the
following conditions:

ID ID 2 and ID ID 2x x y y
i j i j− < − < [1.11]

This prejudgment will eliminate unnecessary calculations and reduce the
computational time (Figure 1.8), while the implementation and memory requirement
are still simple.

In DICE2D, a buffer strategy is adopted to further reduce the computational time
of contact detection. For each contact detection, potential contact pairs (particles
with large threshold values) are detected and stored. This will result in the code not
needing to perform contact detection in a few future steps. Contact detection will
only be triggered when the maximum accumulated displacement of the particles is
larger than the given threshold value. This will lead to some DEM simulations, for
example continuum and fracturing with small deformation, only needing to perform
contact detection at the beginning. Because these problems are the main concerns of
rock mechanics, it was decided that DICE2D should take the simple grid cell
method rather than these more complex counterparts. In the following sections,
details of the contact detection of P2P and W2P are presented.

lenovo
附注
meaning of the equations?

10 High Performance Computing and the Discrete Element Model

Figure 1.8. Computational time of the direct search method
and simplified grid cell method

1.2.2. Particle-to-particle contact

The judgment of two particles in contact is expressed as follows:

() ()2 2

0Gapi j i j i jx x y y R R d− + − − − < [1.12]

where 0Gapd is a threshold value to form a contact pair or potential contact pair.

In DICE2D, a global P2P contact list of the whole model is further divided into
segments for the individual particle. For each particle, there is an array of fixed size
to store its contact pairs (10 is the default size). Figure 1.9 shows contact detection
for initial contact pairs, which includes two steps. The first step is contact detection
with a small threshold value 1(Gap)d to obtain the initial contact pair list. The
second step is potential contact pair detection using a bigger threshold value

2(Gap)d . During the second contact detection step, a deleting operation is first
performed to remove contact pairs whose gaps are larger than the threshold

Serial Implementation 11

value 2(Gap)d . Following this, a search of existing contact pairs is performed. Only
new pairs will be added to the contact list. More specifically, the potential contact
pair will first be checked to see whether it is already listed. In the meantime, the
algorithm will find one empty space on the list. If the contact pair is new and there is
an empty space, then it will be allocated to the empty space.

Figure 1.9. Flowchart of the simplified grid cell contact detection

12 High Performance Computing and the Discrete Element Model

Contact detection during the calculation involves only the second step. It will be
triggered when the accumulative displacement of a particle is larger than the given
trigger threshold value (20.3 Gapd in DICE2D). When contact detection is
performed, the accumulative displacement will be reset to zero. This conditional
contact detection will largely reduce the computational time for the contact detection
of cohesive granular material.

1.2.3. Wall-to-particle contact

The contact between particle and wall is more complex. There are two possible
situations: one is the particle-to-wall case and the other is the particle-to-wall-end
case. Figure 1.10 shows the contact condition of the first case. Mathematically, it
can be written as follows:

0

Gap

BC BA BC

DA R d

⎧ < ⋅ <⎪
⎨

− <⎪⎩

uuur uuur uuur

uuur [1.13]

where BC
uuur

 is the vector of the wall, B A
uuur

 is the vector from one end of the wall to
the particle, BC

uuur
 is the length of the wall, DA

uuur
 is the distance from the particle to

the wall, R is the radius of the particle and dGap is the threshold value of contact
pair formation. When the particle and the wall are in contact, the normal direction is
calculated as follows:

c DAn
DA

=
uuur

uuur [1.14]

where ()DA BA BC BC BA BC= − ⋅
uuur uuur uuur uuur uuur uuur

.

The particle-to-wall-end contact happens when:

lenovo
高亮

Serial Implementation 13

0 or

Gap or Gap

BC BA BC BA BC

BA R d CA R d

⎧ ⋅ ≤ ⋅ ≥⎪
⎨

− < − <⎪⎩

uuur uuur uuur uuur uuur

uuur uuur [1.15]

In this case, contact normal direction is calculated as follows:

Gap

Gap

c

BA BA R d
BA

n
CA CA R d
CA

⎧
− <⎪

⎪⎪= ⎨
⎪ − <⎪
⎪⎩

uuur
uuur

uuur

uuur
uuur

uuur

 [1.16]

Figure 1.10. Contact detection between wall and particle

Rather than N2 complexity of the P2P contact detection, because the number of
walls in a simulation is usually much less than the number of particles, the
complexity of W2P contact detection is an N complexity algorithm. Therefore, the
direct search method is used for W2P contact detection in DICE2D. This algorithm
also has two steps: the first step is to form the initial contact list, and the second step
is to form potential contacts. During calculation, only the second step is used to
update the W2P contact list. The trigger condition of W2P contact detection is the
same as that of P2P contact detection. It should be mentioned that contact detection

14 High Performance Computing and the Discrete Element Model

actually provides candidates only for interaction calculation. To obtain the actual
particle forces, constitutive models are required for both P2P and W2P contact pairs.

1.3. Constitutive model

The constitutive model is the core of the DEM, providing a relationship between
deformation of the particle contact and the particle contact forces. The ability of a
DEM code is mainly determined by its constitutive model. For example the classical
DEM with the Mohr–Coulomb model can be used to simulate granular materials. To
model the fracturing of brittle rock, an enriched bond constitutive model is required.
In this chapter, the constitutive model of DICE2D is represented in an integrated
way. It is a bond model when the material parameters (tensile and cohesion strength)
are non-zero values; otherwise, it is a classical Mohr–Coulomb contact model.

1.3.1. Particle-to-particle constitutive model

Figure 1.11 shows the mechanical components of the P2P contact. Compared
with the classical model of the DEM, the normal spring is further divided into two
subsprings that are distributed with a distance db. This is a simplified version of the
bond model proposed by Potyondy and Cundall [POT 04], which used the rolling
model concept of Jiang et al. [JIA 05]. Instead of continuous integration along the
interface, only two subnormal springs are adopted here. When db is non-zero, the
model is a bond model that can transmit a moment between two particles; otherwise,
it is the classical Mohr–Coulomb contact model in the DEM. In addition to springs,
two dashpots are imposed between two particles along the normal and shear
directions. For the shear direction, because a separate distribution of subsprings
would have no influence on the final mechanical response, only a single spring is
imposed. To obtain the particle interaction force, an incremental form is adopted to
link the force increment with the deformation increment (velocity).

For a P2P contact, the relative angular velocity between two particles is as
follows:

ij j iθ θ θ= −& & & [1.17]

The corresponding forces induced at the two subnormal springs are calculated as
follows:

1
4

b
n ij nF td kθΘΔ = ± Δ& [1.18]

Serial Implementation 15

where nk is the normal stiffness.

The corresponding moment is calculated as follows:

21
4

b
ij ij nM td kθΘΔ = Δ& [1.19]

Between two particles, the two subsprings are in a group; therefore, the angular
velocity–induced global normal force between two particles is canceled to zero.

The normal velocity of the P2P contact is calculated as follows:

() ()n j i x j i yv x x n y y n= − + −& & & & [1.20]

where

()() ()()

()() ()()

j i
x

j i j i j i j i

j i
y

j i j i j i j i

x x
n

x x x x y x y y

y y
n

x x x x y x y y

−
=

− − + − −

−
=

− − + − −

 [1.21]

The normal force increment between two particles is obtained as follows:

n n nF k v tΔ = Δ [1.22]

Finally, together with the normal and angular velocities, for each subspring, its
normal force can be written as follows:

1 1
2 4

b
n n n ij nF k v t td kθΘΔ = Δ ± Δ&% [1.23]

For the shear direction of the P2P contact, its relative velocity is calculated as
follows:

16 High Performance Computing and the Discrete Element Model

() ()s j i y j i x i i j jv x x n y y n R Rθ θ= − − + − − −& && & & & [1.24]

The induced shear force can be given as follows:

s s sF k v tΔ = Δ [1.25]

where sk is the shear stiffness.

The shear force distributed to the shear springs linked to each subnormal spring is
given as follows:

1
2s s sF k v tΘΔ = Δ% [1.26]

For each subspring pair, the Mohr–Coulomb model with a tension cut is adopted
(Figure 1.12). The total normal and shear forces of a P2P contact pair are integrated
along time as follows:

, ,t t t
n n nF F FΘ Θ −Δ Θ= +Δ% % % [1.27]

, ,t t t
s s sF F FΘ Θ −Δ Θ= +Δ% % % [1.28]

Particle i

Particle j

n
s

Normal spring

Shear spring

Figure 1.11. Contact detection between the wall and particle

Serial Implementation 17

Compression

Failure (bond to contact)

Tension

(a) Normal spring (b) Shear spring

Failure (bond to contact)

Figure 1.12. Constitutive model of the P2P contact

The earlier-mentioned equations are correct in an elastic range. The contact bond
will be broken when the following conditions are satisfied:

, 1
2

t
n tF FΘ ≥% [1.29]

or

, , 1tan
2

t t
s n cF F FφΘ Θ≥ +% % [1.30]

where tF is the tensile strength and cF is the cohesion strength of the contact.

The P2P contact pair will turn into a Mohr–Coulomb contact when the
aforementioned condition is satisfied at least for one subspring. When failure occurs,
the two subnormal springs will be merged into a single normal spring. Then, the
moment accumulated between the particles will be released to zero. The cohesion
and tension strength of the contact pair will be set to zero. Finally, the normal force
and the shear force between the newly released contacts will be recalculated using
the Mohr–Coulomb model (Figure 1.13).

18 High Performance Computing and the Discrete Element Model

Compression Tension

(a) Normal spring (b) Shear spring

Figure 1.13. Constitutive model of the normal Mohr–Coulomb contact

In DICE2D, interaction forces between two particles include one normal force,
one shear force and one moment ,(, ,)t t t

n s sF F MΘ% % . When contact pair failures occur,
the last term is set to zero and would not involve further calculation. The stiffness
parameters of the contact are not changed. It should be mentioned that only the
initial contact detection procedure can generate bonded P2P contact pairs. Contact
detection during calculation can produce only Mohr–Coulomb contact pairs. When
the material parameters (tensile and cohesion) are zero, the initial P2P contact pairs
are also treated as Mohr–Coulomb contact pairs. Using this P2P constitutive model,
DICE2D can model both cohesive and non-cohesive granular materials.

In DICE2D, the dashpot’s viscous forces are calculated as follows:

vs
n n n nF k vη= [1.31]

vs
s s s sF k vη= [1.32]

where nη and sη are dimensionless normal and shear viscous parameters (unit s),
respectively. Viscous forces are only considered for P2P pairs that are in bond
state or contact state. When the contact pair is separated, the viscous forces are
set to zero.

Until now, all contact forces were defined according to local coordinates. The
particle force and the moment contributed from each P2P contact pair under the
whole coordinate system are given as follows:

Serial Implementation 19

() ()x vs c vs c
i n n x s s yF F F n F F n= + + + [1.33]

() ()y vs c vs c
i n n y s s xF F F n F F n= − + + + [1.34]

()y vs
i s sM F F R M Θ= + − [1.35]

The total particle forces can be obtained from a sum operation of all forces
contributed by the P2P contacts. For particles in contact with walls, the contribution
from the W2P contacts must be considered. In the following section, the W2P
constitutive model is presented.

1.3.2. Wall-to-particle constitutive model

In W2P contact, there are two springs: one is a normal spring and another is a
shear spring (Figure 1.14). The contact pair is first assigned as Mohr–Coulomb with
a tension cut (see Figure 1.12). When the contact pair is broken, it will then follow
the Mohr–Coulomb model, as shown in Figure 1.13. Because the moment between
particles and the wall can be automatically considered from multiple contacts (see
Figure 1.14), the W2P contact does not consider the bond thickness.

According to the contact detection of the W2P contact, there are three possible
contact points, that is B, D or C (see Figure 1.10). In the W2P constitutive model,
the first step is to determine the contact point (,)wc wc

i ix y . For actual implementation,

the following procedure is used: if GapBA R d− <
uuur

, then the contact point is B and

exit; if GapCA R d− <
uuur

, then the contact point is C and exit; if equation [1.13] is

satisfied, then the contact point is D.

Figure 1.14. Components of the W2P contact

20 High Performance Computing and the Discrete Element Model

The contact direction of the W2P pair is calculated as follows:

()() ()()

wc
j icw

x wc wc wc wc
j i j i j i j i

x x
n

x x x x y y y y

−
=

− − + − −
 [1.36]

()() ()()

wc
j icw

y wc wc wc wc
j i j i j i j i

y y
n

x x x x y y y y

−
=

− − + − −
 [1.37]

The normal deformation of the W2P contact is calculated as follows:

() () () ()wc wc wc wc
n j i j i j i j i jx x x x y y y y Rδ = − − + − − − [1.38]

If the pair is in contact state (0nδ <), then the normal force is given as follows:

P2W P2W
n n nF kδ= [1.39]

where P2W
nk is the normal stiffness of the contact pair, which is twice the normal

stiffness of the linked particle.

The shear force is calculated using an incremental method. First, the relative
velocity of the W2P contact along the shear direction is calculated as follows:

() ()P2W x wx cw y wy cw
s j i y j i x j jv v v n v v n Rθ= − − + − − & [1.40]

() ()P2W x wx cw y wy cw
n j i x j i yv v v n v v n= − + − [1.41]

where wx
iv and wy

iv are velocities of the wall. The incremental shear force is
obtained as follows:

P2W P2W P2W
s s sF k tkΔ = Δ [1.42]

where P2W
sk is the shear stiffness of the contact. Similar to the P2P contact, the total

shear force of the W2P contact needs to be integrated along time and modified
according to the prescribed constitutive model. If the W2P contact fails, both the
tensile and the cohesion strengths of the contact would be set to zero. When a W2P
contact is in bond state (tensile and cohesion strengths are not zero), both the normal

Serial Implementation 21

and the shear forces are calculated incrementally. However, when it is broken, the
normal force will be calculated using equation [1.30], whereas the shear force will
be calculated incrementally as shown in equation [1.42].

The viscosity between the particle and the wall is also considered using the
following equations:

P2Wwvs
n n n nF k vη= [1.43]

P2Wwvs
s s s sF k vη= [1.44]

where P2W
nη and P2W

sη are the viscous parameters in the normal and the shear
directions of the P2W contact, respectively (the same viscous coefficients as the
linked particle).

The viscous forces will only be active when the W2P contact pair is in bond or
contact state. The particle force contributed from a W2P contact under the whole
coordinate system is written as follows:

() ()P2W P2Wx wvs cw wvs cw
i n n x s s yF F F n F F n= + + + [1.45]

() ()P2W P2Wy wvs cw wvs cw
i n n y s s xF F F n F F n= − + + + [1.46]

()P2Wy wvs
i s sM F F R= + [1.47]

The forces from the W2P contact pair list can be further added to the particles
using a sum operation. Until now, essential theoretical parts of the DEM code, for
example main framework, motion equations, contact detection and constitutive
model, have been presented. However, for a complete DEM code, some additional
functions are required, for example a damping scheme for solving the static
problem, selection of a time step and energy calculation for postprocessing. These
issues are covered in the following section.

1.4. Time step, damping and energy calculation

The DEM is an explicit numerical method. To keep the computation stable, a
small time step is required. In DICE2D, the time step is estimated as follows:

22 High Performance Computing and the Discrete Element Model

min 2
max(,)

i
n s
i i

M
t

k k
α

⎛ ⎞
⎜ ⎟Δ =
⎜ ⎟
⎝ ⎠

 [1.48]

where α is a reduction coefficient (0.1 as default) to ensure numerical stability.
Equation [1.48] is from the requirement that the time step in the explicit method
must be less than the time needed for elastic wave propagation through the smallest
element of the model. The reduction parameter α can be used to adjust the time
step in a dimensionless way, which is straightforward in the study of the influence of
the time step on DEM simulation.

For quasi-static problems, damping is needed in the DEM to achieve the
equilibrium condition. The adaptive damping scheme developed by Cundall for the
DEM was adopted and can be written as follows:

()auto signx x xF F C x F= − & [1.49]

()auto signy y yF F C y F= − & [1.50]

()auto signM M C Mθ θ θθ= − & [1.51]

where autoC is the local damping coefficient, with a suggested value of 0.8 for the
static problem. This results in an overdamped system. In some cases, a smaller value
might produce better results. It should be mentioned that the latest version of
Particle Flow Code (PFC) suggests 0.6 as the default value [ITA 08].

For all DEM simulation, it is necessary to check the energy balance. Moreover,
energy analysis is also an important postprocess of numerical simulation results. In
DICE2D, three energies of the computational model are recorded during calculation,
they are the kinematic energy, the strain energy and the gravity positional energy:

()kinematic

particles

1 1
2 2

x x y y y y
i i i i i i i i i iM v v v v v v I θ θΠ = + + +∑ & & [1.52]

strain

P2P pairs

P2W pairs

1 1 1
4 4 2

1 1
2 2

A B
n n s

n n s
n n s

w w
w wn s

n sw w
n s

F F F
F F F

k k k

F F
F F

k k

Π = + +

+ +

∑

∑
 [1.53]

Serial Implementation 23

gravity

particles
i iM y gΠ = ∑ [1.54]

where A
nF and A

nF are the forces of two subnormal springs.

1.5. Benchmark examples

The DEM is relatively new, and some researchers regard it as a “not yet proven”
numerical method (e.g. [ZHA 08]). Therefore, fundamental verifications of a DEM
code are necessary before conducting any engineering applications. Moreover, for a
new DEM code, debugging is always unavoidable. This can be realized only from
running a number of specially designed numerical examples. In this section, a
number of benchmark examples for DICE2D are presented, which are so called
because the main purpose is to check the fundamental algorithmic implementation
of DICE2D.

1.5.1. Falling ball under gravity

In this example, the problem of a ball falling down under gravity is simulated
using DICE2D. Assume that the original position of the ball is zero and let it fall
under gravity. Its falling distance can be calculated as follows:

() 21
2

y t gt= − [1.55]

where g is the gravitational acceleration and t is the falling time. This example is
free from contact detection and the contact constitutive law. It involves only gravity
and the calculation cycle described by equations [1.1–1.8]. The simulation results
are controlled by Newton’s second law of motion, which must be implemented
correctly in the DEM code. Therefore, the example is the best candidate to check the
implementation of the calculation core of a DEM code. It is suggested that such an
example should be tested for any newly developed DEM code.

Number of particles 1 Shear stiffness (N/m) 1e9
Mean particle size (m) 10 Time step reduction factor 0.2
Density (kg/m3) 1 Total steps 20,000
Normal stiffness (N/m) 1e9 Gravitational acceleration (m/s2) 10

Table 1.2. Model parameters of the falling ball problem

24 High Performance Computing and the Discrete Element Model

The computational model has only one particle. The main model parameters
used in the simulation are listed in Table 1.2.

Figure 1.15 shows the simulation results using DICE2D. As expected, the ball
falls down under the effect of gravity. From this figure, a general conclusion on the
correctness of the implementation of the calculation core and postprocessing in
DICE2D can be achieved. If a DEM code cannot give the same results, then
debugging should focus on the coding of equations [1.1–1.8]. Moreover, the
postprocessing code should also be checked.

Figure 1.15. Falling ball under gravity predicted using DICE2D

Directly checking the final graphic outputs is a quick debugging method that is
usually used during the coding period. To have a more quantitative comparison, the
analytical results calculated using equation [1.55] are plotted together with the DEM
prediction (Figure 1.16(a)). The close fit between the DEM and analytical solution
can imply that equations [1.1–1.8] are precisely coded. Moreover, the energy
analysis of the problem is shown in Figure 1.16(b). The energy calculation of the
DEM can be determined from the figure. The energy equilibrium can ensure that the
simulation is physically correct. From the figure, it is found that the strain energy of
the system is zero from begin to end. This is because there is only one particle and
there are no springs available to store the strain energy. Regarding the kinematic
energy and gravity potential energy, the gravity potential energy decreases during

Serial Implementation 25

the fall and changes into kinematic energy. As seen in Figure 1.16(b), an energy
balance exists between these two energies.

For computer implementation, only one benchmark example can be used to
check the data flow under specific conditions. For example the ball falling problem
can check only the correctness of implementation of the particle movement in the
vertical direction. In the following section, a more complex problem is used to test
the implementation of DICE2D in both the vertical and the horizontal directions.

Time (s)
(a) Falling distance

U
y

(m
)

Analytical solution
DEM

Time (s)
(b) Kinematic, strain and gravity potential energy

En
er

gy
 (J

)

 Kinematic energy
Strain energy
Gravity potential energy

Figure 1.16. Falling distance and energy analysis of the falling ball
problem using DICE2D

1.5.2. Pendulum problem

To check the implementation of DICE2D in terms of movement in both the
vertical and the horizontal directions, the pendulum problem is selected as the
second benchmark example. As shown in Figure 1.17, a ball is fixed with an
inclined bar, which will move in both the vertical and the horizontal directions under
the force of gravity. Its differential equation is written as follows:

sin
g

L
θ

θ
= − [1.56]

where θ is the angle between the bar and vertical line, g is the gravitational
acceleration and L is the length of the bar. Equation [1.56] can be solved using the
central difference method or any other numerical integration method. The position
of the ball in the y-direction, Lcos(θ), is adopted as the target variable to be
compared with the DEM simulation.

26 High Performance Computing and the Discrete Element Model

Figure 1.17. The pendulum problem

In this computational model, there is one particle with a coordinate of (100,0).
The model parameters of the problem are shown in Table 1.3. Unlike the falling ball
problem, a fixed spring boundary condition is applied to the particle, which is
described by three numbers as [1 0 0]. The first number is the particle ID, the second
one is the x-coordinate of the fixed point and the third number is the y-coordinate of
the fixed point.

t = 0.224 s t = 3.139 s

t = 5.829 s t = 9.192 s

X (m)

X (m)

X (m)

X (m)

Y
 (m

)
Y

 (m
)

Y
 (m

)
Y

 (m
)

Figure 1.18. Movement of the pendulum problem predicted using DICE2D

Serial Implementation 27

Figure 1.18 shows the simulation results of DICE2D. The movement of the ball
is well captured. It should be mentioned that the system is rotated by more than 180°
during the calculation. This shows that the DEM is able to solve the large rotation
problem directly. Unlike the large deformation finite element method (FEM) [HUG 80],
no special treatment is required in the DEM for problems involving large rigid body
rotation.

Number of particles 1 Shear stiffness (N/m) 1e9
Mean particle size (m) 10 Time step reduction factor 0.2
Density (kg/m3) 1 Total steps 80,000
Normal stiffness (N/m) 1e9 Gravitational acceleration (m/s2) 10

Table 1.3. Model parameters of the pendulum problem

Time (s)

(a) DEM and analytical solution

U
y

(m
)

Analytical solution
DEM

Time (s)

(b) Energy analysis

En
er

gy
 (J

)

 Kinematic energy
Strain energy
Gravity potential energy

Figure 1.19. Analytical solution and energy analysis of the pendulum problem

28 High Performance Computing and the Discrete Element Model

Again, for a quantitative comparison, the analytical solution of equation [1.56]
and the DEM prediction are plotted together in Figure 1.19(a). An exact fit is
observed. This shows that the DEM can precisely solve this large rotation problem.
Moreover, the energy analysis is shown in Figure 1.19(b). The kinetic and gravity
potential energies vary in a cosine function of time, whereas the total energy is in
equilibrium, that is the change in kinetic energy equals that of the gravity potential
energy. From this example, the implementation of the calculation core in DICE2D is
fully checked. From now on, during numerical simulation, if errors occur,
debugging can focus on other parts. This example also tested the implementation of
the fixed spring boundary condition. However, in both the aforementioned
examples, only one particle is involved; the fundamental implementation of contact
is still not considered. In the following section, the implementation of contact will
be addressed step by step.

1.5.3. Elastic deformation of normal spring under tension

The calculation core and fixed spring boundary condition of DICE2D are
checked in the aforementioned two examples. The targets of this example are to
check the implementation of a normal spring under the viscous–elastic condition and
force boundary condition. A simple tension test of a two-particle system is selected
as the benchmark example. The computational model is shown in Figure 1.20. There
are two particles; a contact pair will be formed during the calculation. The bottom
particle (particle ID = 1) is fixed through a particle fixed boundary condition,
described by three numbers as [1 2 0]. The first variable refers to the particle ID, the
second to the direction (1 refers to x and 2 is y) and the third to the applied velocity.
A tension force is applied to the top particle (particle ID = 2) using a particle force
boundary condition, represented as [2 2 1e6]. The first two parameters represent the
particle ID and direction, respectively. The last one is the applied force. The model
parameters of the problem are shown in Table 1.4.

Number of particles 2 Normal viscous coefficient (s) 1e − 4
Mean particle size (m) 10 Time step reduction factor 0.2
Density (kg/m3) 1 Total steps 2,000
Normal stiffness (N/m) 1e9 Gravitational acceleration (m/s2) 0
Shear stiffness (N/m) 1e9

Table 1.4. Model parameters of the tension test

The analytical solution of elastic deformation is as follows:

Fu
k

= [1.57]

Serial Implementation 29

where the applied normal force is 1e6 N, the normal stiffness is 1e9 N/m and the
corresponding normal deformation is 1e − 3 m.

The simulation results of DICE2D are plotted in Figure 1.20. A vibration is
observed in the beginning, which decreases with time due to the kinematic energy
being absorbed by the dashpot. The numerical result after 0.05 s will match the
corresponding analytical solution. From the results, the following suggestion is
made. The DEM is a typical dynamic relaxation-based method; in the simulation of
quasi-static problems, the initial vibration must be addressed properly. For example
the internal force at the beginning might be higher than the material strength,
whereas the final equilibrium value is still low compared with the material strength.
Because the material parameter is usually obtained from the physical test that
satisfies the quasi-static equilibrium condition, directly applying the failure model
during the entire calculation will result in unrealistic simulation results (e.g. model
failures at the beginning vibration stage). In DEM simulation, one solution is to
apply the boundary condition in a gradual manner.

In this example, only elastic deformation of the spring is considered for several
reasons. For the benchmark example, rather than directly running a complex
problem that includes all aspects of the DEM, it is always helpful to run a simple
example that involves only a specific function of the code. This step-by-step method
is useful for debugging a computer code. From this example, we can conclude that
the normal spring and viscous dashpot are properly implemented in DICE2D. The
normal spring tested in this example is in a bond form made up from two subsprings
(shown in Figure 1.11). Because there is no moment produced between two particles
under pure tension force, the bond thickness ratio (WRT), the ratio between db and
the minimal particle diameter of the bond, has no influence on the simulation result.
However, the WRT would have significant influence when shear loading is
considered.

1.5.4. Elastic deformation of spring under shear

The two-particle system of the earlier example is tested under shear loading of
1e6 N. Under the shear force, the elastic deformation can be obtained from equation
[1.57]. However, because the shear force will produce a moment on the top particle,
a bond spring contact is required to balance this moment. Moreover, the boundary
conditions of the bottom particle have to fix the movement along the x-direction and
rotation as well. The model parameters of this example are listed in Table 1.5.
Unlike the uniaxial tension case, the normal stiffness is set to a large value to get rid
of the influence of normal stiffness on the simulation result. Because the normal
stiffness will contribute to the bending of the contact, a large value is needed to filter

30 High Performance Computing and the Discrete Element Model

out the bending influence on the final shear deformation. In this example, instead of
using viscous damping, the automatic local damping is adopted to check the
implementation. The expected shear deformation for the problem is 1e − 3 m. It
should be mentioned that all the failure-related parameters have been set as large
enough. Therefore, the problem is in an elastic (or intact) range.

Figure 1.20. Analytical and numerical results of the direct tension test of two particles

Number of particles 2 Normal viscous coefficient (s) 0.0
Mean particle size (m) 10 Local damping 0.8
Density (kg/m3) 1 Time step reduction factor 0.2
Normal stiffness (N/m) 500e9 Total steps 6,000
Shear stiffness (N/m) 1e9 Gravitational acceleration (m/s2) 0

Table 1.5. Model parameters of the shear test

First, the WRT is set to zero. The simulation result is shown in Figure 1.21(a). It
can be found that even with a very stiff normal stiffness (two particles are locked in
the normal direction) the system is still unstable under shear loading. The upper
particle will rotate around the fixed particle. The displacement of the upper particle
cannot achieve a stable (equilibrium) value. Just keep in mind that the system is still

Serial Implementation 31

intact; however, it is unstable. From this perspective, the basic element of the classical
DEM is shear unstable, which is not the case of the real physical model. Therefore, the
classical DEM might be unsuitable for modeling continuous problems. To overcome
this shortcoming, the bond contact can be used. Figure 1.21(b) shows the simulation
result where WRT is 0.8. It can be observed that a stable solution can be obtained,
which is also close to the expected result. The difference between the predicted
value and the analytical solution is due to the contribution from bending not being
completely removed in the DEM simulation because the normal spring is not
perfectly rigid. This example shows the importance of bond contact. It also verifies
the implementation of the bond model and automatic damping in DICE2D.

Time (s)

(a) WRT = 0.0

U
x

(m
)

Analytical solution
DEM

Time (s)
(b) WRT = 0.8

U
x

(m
)

 Analytical solution
DEM

Figure 1.21. Analytical and numerical results of the direct shear test of two particles
under different bond ratios (WRT = 0.0 and 0.8)

32 High Performance Computing and the Discrete Element Model

The moment transfer between particles is also reflected as an interlocking effect
(e.g. [KAZ 10]). This can be simulated using the polygon particles [KAZ 10] or the
irregular clumps made up from many circular particles [CHO 07]. However, the
implementation of polygon particles is complex and computationally costly. The
clump scheme will require additional time to prepare a clump particle model.
Moreover, the clump scheme reduces the actual resolution of the computational
model into the clump size. The bond model used in DICE2D is able to represent the
moment transfer between particles in a concise way. There is only one
dimensionless geometric parameter WRT introduced in the model.

1.5.5. Failure of normal spring under tension

One major advantage of the DEM is the ability to model the progressive failure
of a material. The basic principle of the fracturing simulation using the DEM is to
replace the complex fracturing and fragmentation process with a number of
elemental failure events at the spring bond level. Tensile failure of a material is
mainly controlled by tension failure of the normal springs. Therefore, the
implementation of a tensile failure model in the DEM code is essential to reasonably
correct simulate fracturing problems. In this section, the tension failure of a single
normal spring is simulated by using DICE2D. The computational model will use the
same model as in the previous example. The model parameters are shown in Table 1.6.
In this example, a vertical velocity of 0.0001 m/s is applied to the upper particle.
The bottom particle is fixed in the x-, y- and θ-directions. Instead of using viscous
damping, a local damping of 0.8 is adopted to simulate a quasi-static loading
condition. From the strain energy variation of the system (Figure 1.22(a)), it can be
concluded that the system is energy stable under velocity loading. Moreover, the
corresponding analytical displacement–force curve of the problem is a triangle that
can be directly obtained. Figure 1.22(b) shows the comparison between the
numerical and analytical predictions. A close fit is obtained. It can be concluded that
the implementation of tension failure in DICE2D is correct.

Number of particles 2 Tension strength (N) 2e4
Mean particle size (m) 10 Local damping 0.8
Density (kg/m3) 1 Time step reduction factor 0.2
Normal stiffness (N/m) 1e9 Total steps 2,000
Shear stiffness (N/m) 1e9 Gravitational acceleration (m/s2) 0

Table 1.6. Model parameters of the direct tension test

Serial Implementation 33

Time (s)

(a) Energy analysis

En
er

gy
 (J

)

Displacement (m)

(b) Displacement force curve

Fo
rc

e
(N

)

 Analytical solution
DEM

 Kinematic energy
Strain energy
Gravity potential energy

Figure 1.22. Energy analysis and displacement–force curve of the
uniaxial tension problem when failure is considered

34 High Performance Computing and the Discrete Element Model

The bond contact model before and after failure is also shown in Figure 1.22(b).
The contact pair is a bond contact before the failure, represented as a solid line.
After the bond contact is broken under tension, it will turn into a normal contact
(dashed line). From energy analysis, it is found that the strain energy will be first
increased to the peak value and then totally released (see Figure 1.22(a)).

1.5.6. Failure of shear spring under shear

To check the implementation of the Mohr–Coulomb failure criterion of the P2P
contact, shear failure of the two-particle system, as shown in Figure 1.23, is
simulated using DICE2D. The loading conditions of the bottom particle are kept the
same. For the upper particle, a normal force of 1e5 N is applied vertically. In the
meantime, a horizontal velocity of 1e − 4 m/s is applied to the upper particle, while
its rotation is fixed. The model parameters are listed in Table 1.7. Except for the
elastic and tension strengths, two additional parameters, cohesion and friction angle,
are involved in the calculation. For this example, the shear force will increase
gradually under the shear velocity until it reaches the maximum shear strength of the
bond. The peak value can be easily calculated as ()tannF Cφ + . After the bond is
broken, the shear force will not change with the shear displacement but rather keep a
constant value as ()tannF φ . It should be mentioned that because the normal force is
applied at the beginning, an initial vibration of the strain energy is observed. As
shown in Figure 1.24(a), after the vibration (caused by the normal force), the strain
energy will increase gradually until it reaches the peak value. From the beginning to
the peak, the bond is in an elastic range. When the bond breaks, the strain energy
will be partially released. Unlike the tensile failure, the energy released from the
shear failure is much less. Figure 1.24(b) shows the displacement–force curve
predicted using DICE2D and the corresponding analytical solution. It can be
concluded that the Mohr–Coulomb model is properly implemented in DICE2D.

Figure 1.23. The computational model of shear failure of the two-particle system

Serial Implementation 35

Figure 1.24. Energy analysis and displacement–force curve of
direct shear test of the two-particle system

Number of particles 2 Cohesion (N) 2e4
Mean particle size (m) 10 Friction angle 10
Density (kg/m3) 1 Local damping 0.8
Normal stiffness (N/m) 1e9 Time step reduction factor 0.2
Shear stiffness (N/m) 1e9 Total steps 2,000
Tension strength (N) 2e4 Gravitational acceleration (m/s2) 0

Table 1.7. Model parameters of the direct shear test

36 High Performance Computing and the Discrete Element Model

1.5.7. Newton balls

Many sophisticated contact detection and treatment models have been developed
for FEMs, for example the augmented Lagrangian method [SIM 92]. However,
contact detection is still considered by many researchers as the most distinct feature
of the DEM. I think that the main difference between FEM and DEM should be that
the results are totally controlled by the contacts in the DEM, whereas for FEM, the
continuum material constitutive model plays an important role. Therefore, some
mesh-enriched DEMs, for example FEM/DEM [MUN 04] and Universal Distinct
Element Code (UDEC) [ZHA 08], are not regarded as pure DEMs. Because contacts
are the dominant elements of a DEM code, debugging the implementation of contact
detection becomes the most critical part. In DICE2D, there are two types of contact
detection: P2P and W2P. This example focuses on the P2P contact detection.

Here, the Newton balls are selected as the benchmark example. As shown in
Figure 1.25, there are two particles linked to two strings. The model parameters are
given in Table 1.8. The right ball is assigned with an initial velocity of 30 m/s. The
ball will move according to the governing equation of the pendulum problem. It will
first move to the peak point and then turn back to hit the left ball. The right ball
will stop and transfer all kinematic energy to the left ball. This right-to-left cycle
will continue forever if there is no energy consumption in the system.

Figure 1.25. Computational model of the Newton balls

Figure 1.26 shows the simulation results using DICE2D. It can be concluded that
the contact detection and treatment of the P2P contact have been properly
implemented. The Newton balls can be viewed as a combination of the pendulum
problem and an elastic collision problem. Energy analysis of the problem is shown
in Figure 1.27(a). There are three energies: strain energy, kinematic energy and

Serial Implementation 37

gravity potential energy. The energy balance happens mainly between the kinematic
energy and the gravity potential energy. For the strain energy, the exchange between
the strain energy and the kinematic energy happens at the collision for a very short
time, and after collision, the gravity potential energy is not exactly zero. This slight
lag caused the sum of the strain and the kinematic energies at two collision points to
be different. However, from the energy analysis beyond the collision points, energy
equilibrium is still satisfied. Therefore, the implementation of the P2P contact
treatment in DICE2D is still correct. Moreover, to have a quantitative comparison,
the corresponding analytical solution of the positions of the two balls is obtained
using equation [1.56] and compared with the numerical results (Figure 1.27(b)).

t = 0.580 s t = 5.805 s

t = 12.891 s t = 22.960 s

X (m)

X (m)

X (m)

X (m)

Y
 (m

)
Y

 (m
)

Y
 (m

)
Y

 (m
)

Figure 1.26. The Newton balls simulated using DICE2D

Number of particles 2 Cohesion (N) 0

Mean particle size (m) 10 Friction angle 0
Density (kg/m3) 1 Local damping 0.0
Normal stiffness (N/m) 1e7 Time step reduction factor 0.5
Shear stiffness (N/m) 1e7 Total steps 5,000
Tension strength (N) 0 Gravitational acceleration (m/s2) 10

Table 1.8. Model parameters of the Newton balls

38 High Performance Computing and the Discrete Element Model

Figure 1.27. Energy analysis and displacement–time curve of
the Newton balls predicted using DICE2D

Serial Implementation 39

1.5.8. Bounce back ball

In this example, the implementation of the W2P contact is checked. The
computational model is shown in Figure 1.28. It is a modified version of the falling ball
problem. The ball will first be assigned with an initial velocity of 30 m/s. It will first fly
to the peak point and then fall down under the effects of gravity, eventually bouncing
back again. This bounce back will repeat forever if only the elastic collision is
considered. When the viscous–elastic collision is considered, the system energy will
decrease with time and the ball will finally settle on the wall. The model parameters are
listed in Table 1.9. The tension, friction and cohesion of the wall are set to zero. Two
cases are modeled: the elastic collision (viscous coefficient is zero) and the viscous–
elastic collision (viscous coefficient = 1e − 4 s). Figure 1.29 shows the ball position at
different times predicted using DICE2D. The ball will bounce back when it hits the wall;
therefore, the wall element is properly implemented. Similar to the Newton balls
problem, energy analysis is conducted (Figure 1.29(a)). It can be concluded that the
energy balance is satisfied for the P2W contact in DICE2D.

Figure 1.28. Computational model of the bounce back ball problem

Number of particles 1 Viscous coefficient 0/1e − 4

Mean particle size (m) 10 Friction angle 0
Density (kg/m3) 1 Local damping 0.0
Normal stiffness (N/m) 1e7 Time step reduction factor 0.5
Shear stiffness (N/m) 1e7 Total steps 3,200
Tension strength (N) 0 Gravitational acceleration (m/s2) 10

Table 1.9. Model parameters of the bounce back ball problem

40 High Performance Computing and the Discrete Element Model

t = 0.058 s t = 2.251 s

t = 6.165 s t = 9.584 s

X (m)

X (m)

X (m)

X (m)

Y
 (m

)
Y

 (m
)

Y
 (m

)
Y

 (m
)

Figure 1.29. Bounce back of the ball predicted using DICE2D

The analytical solution and numerical prediction of the history of the ball’s
position with respect to time are shown in Figure 1.29(b). An exact match
is obtained. In practice, energy will be consumed because of the breakage of contact
points or the viscosity from fluid attached in the contact surface; therefore, the
viscouselastic contact should be used for these situations. To further investigate
the influence of viscous–elastic contact, the energy and displacement of the
viscous–elastic collision case predicted using DICE2D are shown in Figure 1.30.
The kinematic energy and its peak point of the system will decrease with the
increasing number of collisions. From Figure 1.30(b), it can be observed that the
frequency of the system will increase with the collision time. Therefore, the system
will achieve a stable condition in an accelerated way. Imagining the actual scheme
in real life, for example the bounce back of a ping-pong ball on a rigid floor, the
simulation results are reasonable (Figure 1.31).

Serial Implementation 41

Time (s)

(a) Energy analysis

En
er

gy
 (J

)

Time (s)
(b) Displacement curve

U
y

(m
)

 Analytical solution
DEM

 Kinematic energy
Strain energy
Gravity potential energy

Figure 1.30. Energy analysis and displacement curve of the
bounce back ball problem (elastic collision)

42 High Performance Computing and the Discrete Element Model

Time (s)

(a) Energy analysis

En
er

gy
 (J

)

Time (s)
(b) Displacement curve

U
y

(m
)

 Analytical solution
DEM

 Kinematic energy
Strain energy
Gravity potential energy

Figure 1.31. Energy analysis and displacement curve of the
bounce back ball problem (viscous–elastic collision)

Serial Implementation 43

1.5.9. Sliding particle

In this section, the implementation of the W2P constitutive model in DICE2D is
checked. The sliding particle problem is selected as the benchmark example
(Figure 1.32). For the particle sliding along the inclined plane problem, the main
interaction is from the friction force and the gravity subforce along the shear
direction. The bounce back ball problem verified the implementation of the normal
spring of the W2P contact. This example will further check the implementation of
the shear spring and friction law of the W2P contact.

Figure 1.32. Sliding particle problem

The analytical solution of this problem is given as follows:

() ()21 sin tan cos
2

L t t g θ φ θ= − [1.58]

where L is the sliding distance, t is the time, g is the gravitational acceleration, θ is
the inclination angle between the wall and the ground (30°) and ø is the friction
angle of the wall (20°). Table 1.10 shows the model parameters used in DICE2D. To
satisfy the sliding condition described in equation [1.58], the rotation DOF of the
particle is fixed during calculation.

Number of particles 1 Local damping 0
Mean particle size (m) 10 Wall tension 0
Density (kg/m3) 1,000 Wall friction 20
Normal stiffness (N/m) 1e8 Wall cohesion 0
Shear stiffness (N/m) 1e8 Time step reduction factor 0.1
Tension strength (N) 0 Total steps 800
Cohesion 0 Gravitational acceleration (m/s2) 10
Friction angle 0

Table 1.10. Model parameters of the sliding particle problem

44 High Performance Computing and the Discrete Element Model

t = 0.112 s t = 3.250 s

t = 7.174 s t = 8.968 s

X (m)

X (m)

X (m)

X (m)

Y
 (m

)
Y

 (m
)

Y
 (m

)
Y

 (m
)

Figure 1.33. Sliding particle problem predicted using DICE2D

Figure 1.33 shows the sliding process of the particle predicted using
DICE2D. The particle slides from the top of the plate to the bottom. Because the
sliding distance is larger than the contact detection threshold value (0.4 particle
radius), the P2W contact is active during the calculation. Therefore, this
example also checked the implementation of W2P dynamic contact detection.
Figure 1.34(a) shows the change of energies during the particle sliding. The
figure shows that the kinetic energy of the system increases whereas the gravity
potential energy decreases. However, energy balance is not observed because the
friction absorbed some energy. This is not the due to the DEM simulation but
due to the inherent nature of the problem. This can be further confirmed from
the comparison between the numerical prediction on the sliding distance and the
analytical prediction (Figure 1.34(b)).

Serial Implementation 45

Time (s)
(a) Energy analysis

En
er

gy
 (J

)

Time (s)
(b) Sliding distance versus time

L
(m

)

 Analytical solution
DEM

 Kinematic energy
Strain energy
Gravity potential energy

Figure 1.34. Energy analysis and sliding distance curve of the
sliding particle problem (rotation is fixed)

1.5.10. Sliding particle with rolling

Until now, rotation of a particle has still not been checked. In this example, the
particle rotation is verified using the particle sliding example. The computational

46 High Performance Computing and the Discrete Element Model

model is the same as in the previous example. The only difference is that particle
rotation is not fixed during calculation. The model parameters are also the same as
those listed in Table 1.10. The only difference is that the friction angle between the
wall and the particle is set to 80° to ensure the non-slipping condition. Under this
condition, the analytical solution for the particle velocity can be given as follows:

4
3Lv gh= [1.59]

where vL is the sliding velocity along the wall, h is the current sliding height of the
particle and g is the gravitational acceleration. Figure 1.35 shows the rolling and sliding
of the particle. Even though a very large friction angle (80°) is adopted, the particle can
still slide smoothly. Moreover, from the energy analysis (Figure 1.36(a)), it is found that
the kinetic energy is nearly equal to the dissipated gravity potential energy. It can be
concluded that the friction between the wall and the particle did not consume as much
energy as in the previous sliding particle example. From Figure 1.35, the sliding distance
is also much longer. From this example, it can be concluded that the friction angle used
in the DEM cannot directly be used to represent the macroscopic observed friction angle
in a physical test. A calibration is needed. Figure 1.36(b) shows the analytical solution
and numerical prediction using DICE2D.

t = 2.354 s t = 3.811 s

t = 6.838 s t = 8.632 s

X (m)

X (m)

X (m)

X (m)

Y
 (m

)
Y

 (m
)

Y
 (m

)
Y

 (m
)

Figure 1.35. Sliding and rolling particle problem predicted using DICE2D

Serial Implementation 47

Time (s)

(a) Energy analysis

En
er

gy
 (J

)

Time (s)
(b) Sliding velocity versus time

V
el

oc
ity

 (m
/s)

 Analytical solution
DEM

 Kinematic energy
Strain energy
Gravity potential energy

Figure 1.36. Energy analysis and sliding velocity curve of
the sliding and rolling particle problem

48 High Performance Computing and the Discrete Element Model

Until now, all basic functions of DICE2D, for example particle movement
with three DOFs and contact detection treatment of P2P, have been verified.
Because these problems are very simple (maximum of two particles) and the
analytical solutions are available, they can be used to debug the DEM code. In
the following section, two more complex examples are used to further test
DICE2D.

1.5.11. Rock fall problem

Rock fall is a typical hazard in mountainous areas. For example a rock
boulder rolling and sliding from a slope will put any buildings below it in
jeopardy. In this example, a rock fall problem is simulated using DICE2D. The
computational model is shown in Figure 1.37. A high-rise building is simulated
using 11 particles bonded together. To the left of the building, there is a slope
with a large rock boulder. The boulder will slide down and hit the building,
which may collapse. The model parameters are shown in Table 1.11. The
strength of the building is set to zero to trigger the dynamic contact detection
between different particles, as in a granular flow situation. Viscous–elastic
collision is considered to model the energy consummation during the building
collapse.

Figure 1.37. Computational model of the rock fall problem

Serial Implementation 49

Number of particles 12 Normal viscous coefficient (s) 1e − 2
Mean particle size (m) 11.66 Local damping 0
Density (kg/m3) 1,000 Wall tension 0
Normal stiffness (N/m) 1e8 Wall friction 30
Shear stiffness (N/m) 1e8 Wall cohesion 0
Tension strength (N) 0 Time step reduction factor 0.1
Cohesion 0 Total steps 800
Friction angle 0 Gravitational acceleration (m/s2) 10
Normal viscous coefficient (s) 1e − 2

Table 1.11. Model parameters of the rock fall problem

The failure process of the building is shown in Figure 1.38. It can be observed
that the contact between the particles and the wall are dynamically formed and
properly treated. This example shows that these functions, separately verified in the
aforementioned examples, can work together properly to handle a complex problem.
Moreover, the ability of DICE2D to address a computational model with different
size particles is also confirmed.

1.5.12. Beam collision

The ability of the DEM to model fragmentation is regarded as one of its most
attractive advantages in rock mechanics. For a classical continuum-based method,
for example FEM, to model a transaction from continuum to discontinuum, an
additional element (contact element) and a failure model (linear fracture mechanics-
based model) are needed. The DEM is a natural process and has no need of any
further modification. In this example, DICE2D is used to model a fragmentation
problem involving large deformation and contact collision. Figure 1.39 shows the
computational models. There are two particle models: one is a square loose packing
model and the other is a triangular dense packing model. The purpose is to show the
influence of particle packing on the simulation results (Figure 1.40). The model
parameters are shown in Table 1.12. There are 100 and 98 particles for the square-
and triangular-packed models, respectively. All other parameters of these two
models are the same.

50 High Performance Computing and the Discrete Element Model

t = 2.242 s t = 13.452 s

t = 22.420 s t = 31.388 s

X (m)

X (m)

X (m)

X (m)

Y
 (

m
)

Y
 (

m
)

Y
 (

m
)

Y
 (

m
)

Figure 1.38. Dynamic collapse process of the building
modeled using DICE2D. For a color version of the figure, see

www.iste.co.uk/zhao/computing.zip

(a) Square loose packing (a) Triangle dense packing

Figure 1.39. Beam collision problem
using different particle packing

Serial Implementation 51

Number of particles 100/98 Normal viscous coefficient (s) 0
Mean particle size (m) 10 Local damping 0
Density (kg/m3) 1,000 Wall tension 0
Normal stiffness (N/m) 1e8 Wall friction 80
Shear stiffness (N/m) 1e8 Wall cohesion 0
Tension strength (N) 1e9 Time step reduction factor 0.1
Cohesion 1e9 Total steps 800
Friction angle 80 Gravitational acceleration (m/s2) 10
Normal viscous coefficient (s) 0

Table 1.12. Model parameters of the beam collision problem

(a) Square packed model (a) Triangle packed model

t = 4.148 s t = 4.148 s

t = 6.838 s t = 6.838 s

X (m)

X (m)

X (m)

X (m)

Y
 (m

)
Y

 (m
)

Y
 (m

)
Y

 (m
)

Y
 (m

)

Y
 (m

)

t = 8.138 s t = 8.138 s

X (m)X (m)

Figure 1.40. Simulation results of the beam collision problem. For a color
version of the figure, see www.iste.co.uk/zhao/computing.zip

52 High Performance Computing and the Discrete Element Model

From all of the benchmark examples, the implementation of DICE2D was fully
tested and verified. In any computer program, bugs are unavoidable. The only way
to eliminate them is to run more examples. At this point, a serial DICE2D, which
can be used as the DEM platform of parallelization, has been developed and is
ready.

1.6. Conclusion

In this chapter, serial implementation of a DEM code (DICE2D) is described.
The data structure design of particle, wall and boundary conditions, flowchart of key
algorithms such as contact detection and contact treatment, and constitutive model
of P2P and W2P contacts are presented. The target of DICE2D is to provide a DEM
platform through a friendly programming environment for parallelization study. A
few benchmark examples are provided to verify fundamental components of the
DEM implementation. Two complex examples on rock fall and fragmentation are
provided to show the ability of the developed code to model granular flow and
fragmentation problems. Modeling results indicate that DICE2D is a properly
developed DEM code and is ready to be parallelized.

2

Multi-core Implementation

In this chapter, DICE2D is parallelized for multi-core PCs. First, a brief
introduction of parallel computing using multi-core PCs and its implementation
using the Parallel Computing Toolbox® of MATLAB® is presented. Then, the
performance of serial DICE2D is analyzed to aid the selection of essential sections
that might be effective for parallelization. After this performance analysis,
implementation details of parallel DICE2D are described. Finally, four examples are
considered to verify the implementation.

2.1. Multi-core personal computer

The term “personal computer” refers to a general-purpose computer whose size
and capabilities are small, and whose price is sufficiently low to make it available to
individuals. A PC is also called a microcomputer, which indicates that its computing
power is much less than that of a supercomputer. However, with the development of
hardware and software technologies in computer science, modern PCs have become
the dominant tool in performing scientific computing and numerical modeling. The
primary reason for this widespread use is that the software and operating systems in
PCs are relatively user-friendly. In addition, with the advancement of CPUs and
memory used in modern PCs, some engineering problems can also be solved easily
using a PC. Recently, a new term “personal high performance computing” (PHPC)
[CHA 06] has been proposed. PHPC aims to solve problems that previously could
be handled only by a supercomputer using a normal PC. This target may be attained
in the near future if a 50-core CPU and a 128-bit operating system are developed
sufficiently. Modern PCs equipped with advanced multi-core processors already
provide adequate computing power and memory for scientific computing; for
example, a laptop equipped with a 2.7-GHz CPU and 8-GB memory is sufficient to
run a DEM with a few million particles. The typical structure of a quad-core
processor is shown in Figure 2.1. The multi-core processor provides better

54 High Performance Computing and the Discrete Element Model

performance, including multiple execution units that helps execution of the
instructions per cycle separately in different cores; this approach has the advantage
of simultaneously handling multiple tasks. In practice, the level of performance
improvement using multi-core processors is highly dependent on the code used.
Many typical DEM codes, however, do not consider the parallelization of multi-core
PCs. Typically, the parallelization of a code on a multi-core PC is relatively simple
because it manages only the shared-memory environment and does not need to
consider the task distribution and communication between different processors.
Parallel programming environments such as OpenMP [OPE 10], pThreads [DIC 96]
and Threading Building Blocks (TBB) [TBB 10] can also be used to implement the
multi-core version of an existing code; however, there are several shortcomings
[RIC 08]. First, adjustments of the existing code are required for maximum
utilization of the computing resources. Second, managing thermal issues is more
difficult on multi-core designs than on single-core designs. Third, multi-thread code
often requires the complex coordination of threads, which makes it difficult to locate
bugs. The interaction between different threads can also lead to safety problems.
However, from my experience with parallel computing using a multi-core processor,
it can be a stable and promising solution for research purposes.

Figure 2.1. Structure of a general quad-core processor

Multi-core Implementation 55

2.2. Multi-core implementation using MATLAB

OpenMP is the most common technique used to parallelize computer code for
multi-core PCs. However, MATLAB does not currently provide direct support for
OpenMP. Fortunately, it provides an alternative high-level parallelization solution,
the Parallel Computing Toolbox of MATLAB, which provides an integration
solution for parallel computing, including multi-core PCs, GPU computers and
clusters. A number of techniques provided in the Parallel Computing Toolbox can
be adopted for the parallel implementation of DICE2D, for example the MPI, single
program multiple data (SPMD), Distributing Arrays and parfor. In MATLAB, the
MPI functions are wrapped to precisely control the data communication between
different processors. However, parallelization using MPI involves computational
task distribution and communication and is difficult in terms of implementation. The
SPMD can run a block of code in parallel to process its own individual data
separately. This technique is useful to process data processing tasks. There is no
communication and interaction between different subdivided data sets, which is not
true in the case of DEM. Distributing Arrays save memory and computing by
distributing a huge matrix to different processors. In DEM, there are many small
matrix operations rather than a single huge matrix operation. Therefore, Distributing
Arrays are not adopted. The last choice, parfor, is a high-level parallel technique in
which both memory distribution and communication are handled automatically by
MATLAB. Figure 2.2 shows the strategy of parfor computing provided by
MATLAB.

Figure 2.2. Principle of parfor parallel computing strategy of MATLAB

56 High Performance Computing and the Discrete Element Model

A worker–client mode is adopted. The client handles the main stream of
computing, such as the serial code sections, job distribution and communication.
When a loop is parallelized using parfor, all computation tasks are divided into a
few subsections that are sent to workers for calculation. When computing is
finished, the results are sent to the client. It should be noted that MATLAB sends the
whole array to the workers rather than just part of it, whereas only the assigned parts
are calculated by the corresponding workers. The workers can be regarded as
virtually built computers with their own CPU and memory. Owing to data being
communicated among the workers and the client, the performance of the parallel
code might not always be faster than that of the serial code. For the above reasons,
among the available techniques, parfor is selected for the parallel implementation of
DICE2D. This chapter focuses on the parallelization of DICE2D in multi-core PCs
using parfor.

The parallelization of code using parfor can easily be achieved by replacing the
keyword for in the serial version with the keyword parfor. For those who are
familiar with OpenMP, the usage of parfor can be simply viewed as omp parallel
for. Example MATLAB codes are shown in Table 2.1.

Serial Code Parallel Code
function Serial_T01 function Parallel_T01
tic; matlabpool open local 4
N=1e3; tic;
for i=1:N N=1e3;
 A(i)=sin(i*2*pi/1024) parfor i=1:N
end A(i)=sin(i*2*pi/1024)
plot(A); end
toc toc

 matlabpool close

Table 2.1. MATLAB code using parfor

The first column of the table is the serial code. The corresponding parallel
version is shown in the second column. Timer functions, tic and toc, are used to
record the computing time of these codes. The only difference that can be observed
between the main body of these two codes is the keyword for. In MATLAB2010b,
to run a parallel code, a pool of workers must be explicitly allocated using the
matlabpool function. The number of workers is limited by the available physical
cores and type of MATLAB license. For example, my license of MATLAB2011b
allows me to allocate a maximum of four workers. My laptop is a quad-core
computer. Therefore, a pool with four workers is created using “matlabpool open
local 4”. When computing is finished, it is important to close the pool using

Multi-core Implementation 57

“matlabpool close”. It should be noted that the latest version of MATLAB supports
default pool settings. Details can be found in the manual or online help of
MATLAB. These documents are freely available on the Internet.

The computational times of these two codes given in Table 2.1 are shown in
Table 2.2. When N is small, the computational time of the parallel code is even
higher than that in the case of the serial code. This increase is due to the overhead
time used for memory allocation and the fact that the demand imposed by
communication of the parallel code negates the benefit obtained from fast
computing operations through the subdividing strategy. However, when N is larger
than a given value, the parallel code becomes faster than the serial code. The
maximum speedup is approximately 2. From this example, it can be concluded that
parfor is effective in MATLAB. In section 2.3, this technique is used to parallelize
DICE2D.

N
Computational time (s)

Speedup
Serial code Parallel code

1.00E + 03 0.00118 0.17672 0.00670
1.00E + 04 0.00962 0.18950 0.05074
1.00E + 05 0.09554 0.20491 0.46626
1.00E + 06 0.86391 0.65985 1.30925
1.00E + 07 5.54261 2.49368 2.22266
1.00E + 08 65.9267 28.6730 2.29925

Table 2.2. Run time of parallel and serial code in MATLAB

2.3. Performance analysis

For parallel implementation, it is essential to conduct a performance analysis on
the serial code to find the most computational time-consuming parts for
parallelization. In MATLAB, the performance analysis can simply be achieved using
the profile command. For example, to test DICE2D, the code shown in Table 2.3 can be
used.

profile on
D2D(1);
profile view

Table 2.3. Performance analysis of DICE2D

The uniaxial compression test of a cube is selected as an example for the
performance test of DICE2D (Figure 2.3). Details on the model parameters and

58 High Performance Computing and the Discrete Element Model

boundary conditions are presented in section 2.5.1. The particle model used in the
performance test is 9 × 9. A report on the computational time is shown in Figure 2.4.
During calculation, the particle model is plotted to produce animation. In the
meantime, images are stored in the hard drive. By turning on these functions,
real-time information about the DEM simulation can be obtained. However, from
the profile analysis, it can be observed that nearly all of the computational time was
spent on the plotting and output rather than on the DEM calculation. This
information can be found in the graphic display of Total Time Plot (see Figure 2.4)
in which the dark bar refers to the self-run time (the time spent on the corresponding
function). In DICE2D, the plotting and file outputs are difficult to parallelize
because they are system-provided functions. Moreover, for DEM simulations,
graphic outputs of the whole-particle model are usually not necessary. In the second
run, the plotting and output functions are disabled. Figure 2.5 shows the
computational time of DICE2D without plotting and outputs. From the total time
analysis, it can be found that the majority of computational time is spent on the
DEM main code. In the parallel implementation, the functions to turn the plotting
and outputs on or off were added in DICE2D as a result of profile analysis. In the
following (sections 2.5.1 to 2.5.4), when DICE2D is tested for parallelization, the
outputs and plotting are all turned off. For this book, separate runs were conducted
to produce figures.

Figure 2.3. Uniaxial compression test of a cube

Multi-core Implementation 59

Figure 2.4. Performance analysis of DICE2D (plotting and outputs enabled)

Figure 2.5. Performance analysis of DICE2D (plotting and outputs disabled)

60 High Performance Computing and the Discrete Element Model

2.4. Parallel implementation

This section presents the parallel implementation of DICE2D based on parfor.
The main purpose is to reduce the computational time of DEM simulation on
multi-core PCs. As DEM is an explicit method in time, only minor changes are
needed to parallelize the code. Quad-core PCs are quite common now, but the serial
code cannot use its computing resources well. Parfor provides a useful tool to
parallelize MATLAB code for a multi-core environment. A fork-join model is used
in the parallelization. The work scheme of the serial and parallel DEM codes is
shown in Figure 2.6. From the figure, it can be observed that the serial DEM has
only one main thread. The contact detection and contact force calculations of the
particles are performed sequentially (see Figure 2.6(a)). The multi-core DEM uses
the fork-join model to let one cycle be calculated by more than one processor
(abstracted as workers in MATLAB) (see Figure 2.6(b)). The parallel DICE2D
works as follows. First, the client executes the preprocessing and activates all
workers. Then, when the client requires parallel computing, the workers are
allocated to the corresponding calculation tasks.

Figure 2.6. Scheme of serial and parallel implementation of DEM in a multi-core PC

From the profile analysis, it can be determined that the most time-consuming
parts of DICE2D are the P2P contact force calculation and P2P contact detection.
Therefore, the parallelization focuses on these two elements. For P2P contact force

Multi-core Implementation 61

calculation, the code can be parallelized by simply replacing for with parfor (Table 2.4).
Except for the keywords, the rest of the serial and parallel codes are the same.

Serial Code Parallel Code
%Particle–particle contact force %Particle–particle contact force
for j=1:NumP parfor j=1:NumP

for k=1:MAX_PN for k=1:MAX_PN
 jP=PP_C(k,j); jP=PP_C(k,j);

… …
end end

end end

Table 2.4. Parallelization of P2P contact force calculation

However, this treatment may not work for other code segments. For example,
error information was produced when the same approach was used for the P2W
force calculation (Figure 2.7). This error occurred because MATLAB cannot
recognize indirect address operations, for example when the calculation array is
further indexed by another array. As the P2W calculation is not the main
time-consuming component, parallelization is not used. The same problem is
observed in the P2P contact detection. In the following sections, the solution to this
problem is presented.

Figure 2.7. Error information in parallelization of P2W force calculation

For P2P contact detection, MATLAB cannot interpret the memory access
method used in the contact list array (PP_C). Table 2.5 shows the original serial

62 High Performance Computing and the Discrete Element Model

code of P2P contact detection and the corresponding parallel version. A temporary
array is used to store the corresponding neighbor indexes. Instead of directly
operating on the contact list, the code operates on the temporary array first and then
passes the results to the contact list through a vector operation. Thus, the error
information disappears, and the code can execute correctly.

Serial Code Parallel Code
N=length(X); N=length(X);
PP_C=zeros(MAX_PN,N); PP_C=zeros(MAX_PN,N);
Index_Temp=ones(1,N); Index_Temp=ones(1,N);
for i=1:N parfor i=1:N

for j=1:N Index_Temp=1;
if i==j PLoc=zeros(MAX_PN,1);
else for j=1:N

if abs(IDGX (i)– if i==j
IDGX(j))<2 && abs(IDGY(i)–IDGY(j))<2 else

x1=X(i); if abs(IDGX (i)–
y1=Y(i); IDGX(j))<2 && abs(IDGY(i)–IDGY(j))<2
x2=X(j); x1=X(i);
y2=Y(j); y1=Y(i);
R1=R(i); x2=X(j);
R2=R(j); y2=Y(j);
if R1=R(i);

Contact_P_P(x1,y1,x2,y2,R1,R2)>–dGap R2=R(j);
 if
PP_C(Index_Temp(i),i)=j Contact_P_P(x1,y1,x2,y2,R1,R2)>–dGap
 PLoc(Index_Temp)=j ;
Index_Temp(i)=Index_Temp(i)+1; Index_Temp(i)=Index_Temp+1;

end end
end end

end end
end end

end end

Table 2.5. Parallelization of P2P contact detection

The parallel implementation of DICE2D requires only a minor effort of replacing
the corresponding keywords. The uniaxial compression test was used to determine
the performance of the parallel DICE2D. The computational time and speedup of the
parallel DICE2D are shown in Figure 2.8. When the particle number is less than

Multi-core Implementation 63

5,000 or more than 30,000, the performance of the parallel DICE2D is worse than
that of the serial case because the computational time of the slice matrix operation
and communication between the client and the workers is strongly influenced by the
number of particles. When the number of particles is small, the computational gain
from parallel computing is not comparable with the cost of the overhead time used
for parallelization. However, when the number of particles is too large, the
computational time spent on communication is again dominant due to the large array
size; communication is slow and might be unable to fully use the high-speed cache
of the computer. From Figure 2.8, it can be observed that models with
approximately 10,000 particles can achieve the best performance of the parallel
DICE2D. Overall, the performance of the multi-core (parallel) DICE2D
implementation is better than that of the serial code.

Figure 2.8. Computational time and speedup analysis of multi-core (parallel) DICE2D

Compared with the efforts put into parallelization, the parallel DICE2D is
successful. However, nonlinear processes such as fracturing are not modeled in the
numerical simulation. Moreover, the influence of the number of workers on the
performance is not fully studied. In section 2.5, performance tests of the parallel
DICE2D under different scenarios are presented.

64 High Performance Computing and the Discrete Element Model

2.5. Numerical examples

2.5.1. Uniaxial compression test

Despite the many advantages of DEM, micro parameter selection remains one of
its main shortcomings [YOO 07]. In practice, a calibration process mimicking the
actual physical test is adopted to determine the actual input micro parameters. In this
example, Poisson’s ratio will be determined using a numerical uniaxial compression
test. The setup of the computational model is shown in Figure 2.9. A two-
dimensional (2D) square specimen is represented by a group of circular particles.
The corresponding physical configuration is a group of bonded cylindrical bars
(with thickness of 1), which represents the plane stress condition. To simulate the
plane strain problem, the following relationship can be used:

2 ,
11

EE νν
νν

′ ′= =
−−

 [2.1]

where E′ and ν ′ are the corresponding elastic parameters under plane strain
condition, and E and ν are the parameters reconstructed by the DEM.

Figure 2.9. Computational model to extract Poisson’s ratio

Displacements of two particles are recorded to represent the strain gage. The
horizontal and vertical strains are calculated as follows:

1 2
0 0 0 0

,
A B C D

A B C D

u u v v
y y x x

ε ε− −
= =

− −
 [2.2]

Multi-core Implementation 65

where Au and Bu are the y displacements of two measurement points, A and B; 0
Ay

and 0
By are the initial y coordinates; and the definitions of Cv , Dv , 0

Cx and 0
Dx are

analogous.

The first simulation is conducted on a regular-packed DEM (Figure 2.10(a)). A
constant velocity loading (0.001 m/s) is applied to the top of the specimen, which
will reproduce a strain rate of 10−5 s−1 (a quasi-static loading condition). Four points
are selected to record the strain along the horizontal and vertical directions. The
model parameters are listed in Table 2.6. The simulation results are shown in Figure
2.10(b)–(d). From the y displacement contour map of the model, as expected, a
uniform distribution of the y displacement is obtained for the uniaxial compression.
From the energy analysis, it can be found that the strain energy is the main energy
variation. This result confirms the quasi-static loading scenario. Figure 2.10(d)
shows the history of Poisson’s ratio, which is always zero.

Number of particles 100 Normal viscous coefficient (s) 0
Mean particle size (m) 10 Local damping 0.8
Density (kg/m3) 1,000 Wall tension 0
Normal stiffness (N/m) 1e8 Wall friction 0
Shear stiffness (N/m) 0 Wall cohesion 0
Tension strength (N) 5e9 Time step reduction factor 0.1
Cohesion 5e9 Total steps 800
Friction angle 80 Gravity acceleration (m/s2) 0
Normal viscous coefficient (s) 0

Table 2.6. Model parameters of the uniaxial compression
test of square-packed specimen

Figure 2.11 shows the computational model and the results of a triangular-
packed specimen. Except for the number of particles (95), the same model
parameters listed in Table 2.6 are used. Unlike the square-packed specimen,
Poisson’s effect is observed (see Figure 2.11(d)). Therefore, Poisson’s effect is
strongly influenced by the packing pattern of the specimen. However, in the finite
element method (FEM), the shape of the element does not influence Poisson’s
effect. For example, the rectangle element model can still reproduce the input
Poisson’s ratio. For further investigation, a random-packing specimen is simulated,
and the results are shown in Figure 2.12. Poisson’s effect is also reproduced by the
irregular-packed specimen (see Figure 2.12(a)). To obtain Poisson’s ratio, the value
of the stable range of the history curve is adopted (see Figure 2.12(d)).

66 High Performance Computing and the Discrete Element Model

Figure 2.10. Computational model and simulation results on a regular-packed DEM
sample. For a color version of the figure, see www.iste.co.uk/zhao/computing.zip

Figure 2.11. Computational model and simulation results on a triangle-packed DEM
sample. For a color version of the figure, see www.iste.co.uk/zhao/computing.zip

Multi-core Implementation 67

Figure 2.12. Computational model and simulation results on an irregular-packed DEM
sample. For a color version of the figure, see www.iste.co.uk/zhao/computing.zip

From these DEM simulations, Poisson’s ratio effect is a result of the force chain.
For an irregular-packed specimen, the coordinate number (CN) (average number of
bonds of each particle) is used to characterize the structure difference between
models with different threshold values for bond forming. From previous studies (e.g.
[YOO 07]), Poisson’s ratio is found to be directly controlled by the ratio between
shear and normal stiffness, Ks/Kn. Figure 2.13 shows the relationship between Ks/Kn
and Poisson’s ratio of different particle packing models. For the regular square-
packed specimen, Poisson’s ratio is always zero. For the regular triangular-packed
specimen, Poisson’s ratio can be adjusted using different Ks/Kn. It should be noted
that there is a limit of 1/3. Poisson’s ratio for irregular packing can be larger than
this limit. However, a particle model with large CN will produce a specimen similar
to the regular triangle-packed specimen (see Figure 2.13). Therefore, for a densely
packed specimen (CN is large), there should be a Poisson’s ratio limitation for
DEM, which is similar to the classical lattice spring model (LSM) proposed by
Hrennikoff [HRE 41]. Therefore, the disadvantage of Poisson’s limitation in LSM is
still not completely overcome in DEM.

lenovo
高亮

68 High Performance Computing and the Discrete Element Model

Figure 2.13. Influence of Ks/Kn on Poisson’s ratio of different particle models

2.5.2. Beam bending test

In this example, the elastic modulus of DEM is studied. The commonly used
uniaxial compression test in the previous example is a one-dimensional (1D)
controlled problem that does not consider the influence of rigid body rotation. For
example, the computational model in Figure 2.10(a) cannot actually represent the
continuum model with a Poisson’s ratio of zero because the square-packed model is
unstable under bending loading. The beam bending problem (Figure 2.14) involves
shear, compression and tension states, and is a good candidate for the calibration of
elastic modulus.

The analytical solution of the dimensionless deflection is given as follows:

() ()()
() () ()()

2

2

4 3 , 0.5

1 4 1 3 , else

y

y

u a a a a

u a a a

⎧ = − <⎪
⎨

= − − −⎪⎩

 [2.3]

where () () max
y y yu a u a u= is the dimensionless beam deflection along the loading

direction, ()yu a is the deflection, m ax
yu is the maximum deflection, /a x L= is the

Multi-core Implementation 69

dimensionless x coordinate and L is the support length. The elastic modulus can be
obtained by:

3

max
BEAM48 y

FLE
u I

= [2.4]

where F is the loading force and BEAMI is the inertial cross area that can be
calculated as follows:

3

BEAM 12
H

I = [2.5]

where H is the height of the beam.

Figure 2.14. The beam bending problem

Figure 2.15. DEM computational model of the beam bending problem

The main purpose of the example is to study the elastic moduli of DEM models
and to verify the ability of DICE2D to model elasticity problems. It should be noted
that equation [2.3] is only valid under small deformation. Therefore, the applied
force is controlled at a relatively small value. Figure 2.15 shows the computational
model to simulate the beam bending problem. From the previous example, it is clear
that the square-packed model is not suitable for continuum modeling, whereas the
triangular-packed model provides a good reference for continuum modeling and

70 High Performance Computing and the Discrete Element Model

parameter selection (see Figure 2.13). In this example, the beam is constructed based
on the triangular-packed particle model. Roller and fixed boundaries are applied to
the beam bottom through particle boundary conditions applied to two particles. The
loading force is applied to one particle on the top, as shown in Figure 2.15.
A number of measurement points are selected along the middle line of the beam to
record the deflection during calculation.

It should be noted that, for a triangular-packed model, when shear spring and
rigid body rotation are not considered, an analytical solution between the elastic
modulus and the normal stiffness can be written as follows [HRE 41]:

1
3nE k ⎛ ⎞

= ⎜ ⎟
Δ⎝ ⎠

 [2.6]

where Δ is the unit thickness required to maintain dimensional consistency. The
model parameters of the beam simulation are shown in Table 2.7. It should be noted
that the shear stiffness will assume different values when investigating the influence
of Ks/Kn on the elastic modulus. The bond thickness ratio is another parameter that
must be investigated. Using equation [2.6], the estimated elastic modulus is found to
be 57 MPa.

Number of particles 203 Cohesion 13e9
Mean particle size (m) 10 Friction angle 80
Density (kg/m3) 1,000 Local damping 0.8
Normal stiffness (N/m) le8 Time step reduction factor 0.1
Shear stiffness (N/m) – Total steps 800
Tension strength (N) 13e9 Gravity acceleration (m/s2) 0

Table 2.7. Model parameters of the beam bending problem

Figure 2.16 shows the energy analysis and simulation results of the beam
bending problem when Ks/Kn = 0.2 and WRT = 0.2. The strain energy of the beam
reaches a relatively stable state, whereas the kinetic energy approaches zero at the
end of the simulation. These conditions ensure that the modeling is in a quasi-static
condition. Using equation [2.4], the elastic modulus is calculated to be 40 MPa. The
difference is due to the actual depth of the beam being less than the value used in
Figure 2.15, which is a geometric property of the particle model. The particle force
is applied at the center of the loading particle rather than at its surface. In DEM, the
difference between these two cases cannot be distinguished. The DEM prediction
and analytical solution of the dimensionless deflection are shown in Figure 2.16(b).
Good agreement is achieved. It can be concluded that the DEM can reproduce a
reasonable elastic solution.

Multi-core Implementation 71

Figure 2.16. DEM modeling of the beam bending problem (Ks/Kn = 0.2, WRT = 0.2).
For a color version of the figure, see www.iste.co.uk/zhao/computing.zip

From the uniaxial compression test simulation, it was found that WRT does not
influence Poisson’s ratio. However, numerical results from the beam bending
example show that WRT influences the elastic modulus. Nevertheless, this
indication may not be as true as the data suggest for the following reason. Due to the
influence of the geometric characteristic of the particle model, the effective beam

72 High Performance Computing and the Discrete Element Model

height is around H-D when WRT is zero (D is the particle diameter). When WRT is
larger, the effective beam height will approach H. According to equations [2.4] and
[2.5], a greater elastic modulus will be obtained for a larger WRT. This variation
decreases when the number of particles increases (higher resolution).

Figure 2.17. DEM modeling of the beam bending problem (Ks/Kn = 0.2, WRT = 1.0).
For a color version of the figure, see www.iste.co.uk/zhao/computing.zip

Multi-core Implementation 73

Figure 2.17 shows the energy analysis and simulation results of the beam
bending problem when WRT is 1.0. From the strain energy and kinematic energy, it
can be observed that a stable convergent solution is obtained. However, from the
contour map of the y displacement (see Figure 2.17(a)), it can be found that the
distribution is not the classical distribution of the beam bending problem (see Figure
2.16(a)). The predicted dimensionless deflection and analytical solution are shown
together in Figure 2.17(b). From these results, it can be concluded that the DEM
with WRT of 1.0 cannot reproduce an elastic solution. In other words, the elasticity
is not applicable to the discrete model. From a simple parameter study, it is found
that an elastic solution can be obtained when WRT is within 0.0–0.9. In this book,
0.1 is suggested as the default value for DEM simulations of cohesive granular
materials such as rock and concrete.

Figure 2.18. Relationship between Ks/Kn and the elastic modulus
calculated from the beam bending problem

From the earlier analysis, Ks/Kn is selected as the control variable to link with the
elastic modulus. When Ks/Kn is zero, the elastic modulus of the model is marked as
E0. Then, all elastic moduli of other Ks/Kn values are scaled as E/E0. The relationship
between Ks/Kn and the scaled elastic modulus is shown in Figure 2.18. A simple
linear function can be found. In actual modeling, the following procedure can be

74 High Performance Computing and the Discrete Element Model

used to estimate the micro mechanical parameters in DICE2D. First, the value for
Ks/Kn can be estimated from Figure 2.13 using a graphic method with the target
Poisson’s ratio. Then, E/E0 can be further obtained from Figure 2.18. Finally, Kn can
be obtained from equation [2.5]. A good estimation of Kn and Ks can make the
calibration process faster. Moreover, for problems in which deformation is not the
main concern, these estimated values might be directly used in actual modeling.

The beam bending problem is executed five times using the parallel DICE2D
with a different number of workers. When the number of workers is zero, the
parallel DICE2D works as a serial DEM code. The computational times are listed in
Table 2.8. When the number of workers increases, the computational time generally
decreases. However, 3 seems to be an optimal number, which is because the laptop
has four CPUs. If the client uses one, only three cores are left for the workers. In this
example, the serial code runs much faster than the parallel code. Because a small
number of particles are used in this example, the benefit obtained from parallel
computing on calculation time saving does not exceed the overhead time spent on
parallelization.

Number of workers 0 1 2 3 4
Computational time 194.87 2554.58 1042.61 714.54 781.35

Table 2.8. Computational time of the beam bending problem
by parallel DICE2D using different number of workers

For both the uniaxial compression test and the beam bending problem, the
contact detection during calculation is not active. The performance benchmark in
Figure 2.8 and Table 2.8 is true only for elastic intact problems. In section 2.5.3, a
problem involving dynamic contact detection is solved to test the performance of the
parallel DICE2D on modeling granular flow-like problems.

2.5.3. Collapse of a granular tree under gravity

In this example, a case involving massive contact detection during calculation is
shown. As I prepared this example during Christmas time, the model was made up
as a Christmas tree. The image-based modeling technique was adopted. The basic
principle is to build up base particles. Then, a subroutine is used to filter out the
background particles. The MATLAB implementation is shown in Table 2.9. Figure
2.19 shows the digital image of a Christmas tree. The corresponding DEM model
built from the image model subroutine is shown in Figure 2.20. Three walls are used
to make up a container for the collapsed particles.

Multi-core Implementation 75

function [X,Y,R,T,MAT]=Generate_Tree_Particle
% Build a particle model form image
A=imread(‘Tree.bmp’);
[n,m]=size(A);
Nnum=sum(sum(1-A));
iIndex=1;
X=zeros(1,Nnum);
Y=zeros(1,Nnum);
R=10*ones(1,Nnum);
T=zeros(1,Nnum);
MAT=ones(1,Nnum);
for i=1:n
for j=1:m
if(A(i,j)==0)%Not background (white refers background)

xCur=10+(j-1)*20;
yCur=20*n-(10+(i-1)*20;
X(iIndex)=xCur;
Y(iIndex)=yCur;
iIndex=iIndex+1;

end
end

end

Table 2.9. MATLAB implementation of building a DEM particle model from an image

Figure 2.19. Digital image of a Christmas tree

76 High Performance Computing and the Discrete Element Model

Figure 2.20. Computational model of the tree collapse problem

The model parameters are shown in Table 2.10. The strength parameters are set
to be zero. Under gravity, the tree breaks down and turns into a granular-like flow.
Figure 2.21 shows the tree collapse process. The tree initially collapses under
gravity (see the first row images). Then, the upper part expands into a much looser
granular state, which is further compacted under gravity. The rest of the process
looks like a granular flow. This process can also be used as a particle packing
method. In section 2.5.4, the final particle model of Figure 2.21 is used as the initial
particle model for the next example.

Number of particles 846 Normal viscous coefficient (s) 0.001
Mean particle size (m) 10 Friction angle 0
Density (kg/m3) 1,000 Local damping 0.01
Normal stiffness (N/m) 1e8 Time step reduction factor 0.1
Shear stiffness (N/m) 1e7 Total steps 20,000
Tension strength (N) 0 Gravity acceleration (m/s2) 10
Cohesion 0

Table 2.10. Model parameters of the tree collapse problem

Multi-core Implementation 77

This example was also simulated by the parallel DICE2D using a different
number of workers. The computational times are shown in Figure 2.22. A speedup
factor of approximately 2 is achieved when the number of workers is 3, because
contact detection is the most time-consuming part of this example. It can be
concluded that the contact detection of DICE2D has been successfully improved in
the parallel DICE2D.

2.5.4. Block caving

Block caving is considered to be the most economic choice for large-scale
underground mining, which costs only about 10% (~5–10 AUDs per ton) of the cost
of stopping methods (~30–60 AUDs per ton). This approach involves a number of
classical rock mechanics problems, for instance deformation of rocks under
excavation at great depth, fracturing of rock under dynamic and quasi-dynamic
loading, fragmentation of fractured rock under gravitational force and granular flow
of rock fragments under gravity. These in turn control many crucial aspects relating
to block caving, such as stability and serviceability of undercuts and draw horizons;
caveability and production; and ground surface subsidence. The ground surface
subsidence can further trigger additional serious geotechnical hazards and may
jeopardize mine infrastructure. One example was reported in the Palabora copper
mine, where a 300 m landslide was trigged by a block caving operation, affecting
the water and power lines, a railway line and water reservoirs. Three approaches are
available to analyze rock mechanics problems in block caving: empirical methods,
experimental methods and numerical methods. Using the design charts with the
design parameters (e.g. mining rock mass rating, height of the caved rock, and
minimum and maximum spans of the footprint), the caveability, production and
ground surface subsidence of block caving can be approximated in a simple manner.
The main shortcoming of the empirical approach is the difficulty of determining the
parameters related to rock masses, for example the mining rock mass rating and the
density of fractured rock. Furthermore, the empirical method also ignores the stress–
strain relationship of the rock masses and the influence of geological structures, and
other site-specific issues that can affect the actual caving behavior significantly.

78 High Performance Computing and the Discrete Element Model

Figure 2.21. Falling process of the Christmas tree under gravity modeled by
DICE2D. For a color version of the figure, see www.iste.co.uk/zhao/computing.zip

Multi-core Implementation 79

Figure 2.22. Computational time of the tree collapse problem
using parallel DICE2D with different number of workers

The experimental approach can provide physical insights into the behavior of
rock masses mined in block cavings. However, due to the large expense and time in
the model construction, only a few tests on block cavings can be found in the
literature, for example the 2D caving model tests conducted by McNearny and Abel
[MCN 93] from Colorado School of Mines, and the three-dimensional (3D) model
tests conducted by Trueman et al. [TRU 08] from the University of Queensland.
These physical models provided useful information on the response of rock masses
during block caving (e.g. the failure patterns of the caving zone and the deflection of
the whole model including the ground surface subsidence). However, given the cost
associated with each test and the construction time, physical tests are cost
prohibitive for practical purposes. Moreover, some unrealistic assumptions must be
made in the model testing, for example the horizontal stresses are not simulated
correctly, the blocks are arranged uniformly [MCN 93] and the rock mass is in a
discrete/granulated state without undergoing failure or fracturing [TRU 08]. These
assumptions lead to model test results that can only be used for research purposes
rather than a predictive model to guide the actual operation in block caving.

With the improvement of modern computers and computing power, numerical
modeling techniques have become exceptionally useful in scientific research and
engineering applications, and provide the most promising solution to study
mechanical behavior of rock masses [BRO 08]. However, there are many limitations
in current numerical techniques and, in practice, empirical methods, such as

80 High Performance Computing and the Discrete Element Model

Laubscher’s method [LAU 00], are still the most commonly used methods in block
caving. For example, the FEM, as the mainstream numerical tool in scientific
research and engineering applications, is still limited in modeling fracturing and
fragmentation of rock masses due the lack of sophisticated constitutive models for
rock mass and the difficulty in parameter selection. The DEM is promising in
simulating the complex mechanical interactions of rock masses such as fracturing
and fragmentation. Nevertheless, a major shortcoming of the DEM is that proper
calibration of the model parameters is required to obtain reasonable results
[CAM 13]. In addition, due to the lack of advanced constitutive models for the
DEM, it is unlikely that the DEM with a large element size (required for practical
problems) can capture the nonlinear deformation of rock masses at the pre- and
post-failure stage. The FEM/DEM [MUN 95] is a newly developed method to
integrate FEM and DEM while avoiding their disadvantages. However,
implementing this method into a computer code requires complex routines.
Moreover, there are 12 DOFs for each numerical unit of the 3D FEM/DEM (6 DOFs
for DEM) and is computationally costly. In addition, proper calibration is still
required for the FEM/DEM to model fracturing and fragmentation; furthermore, a
sophisticated constitutive model is still needed for the FEM/DEM to realistically
model the nonlinear deformation of rock masses.

Figure 2.23. Simplified model configurations for block caving and long wall mining

Multi-core Implementation 81

Figure 2.24. Block caving simulation using multi-core DICE2D. For a color version of
the figure, see www.iste.co.uk/zhao/computing.zip

In this example, DICE2D is preliminarily used to model the block caving
process. The computational model of the block caving model used in DICE2D is
shown in Figure 2.23(a). A long-wall mining model is built as shown in Figure
2.23(b) to provide a comparison. The particle model uses the final packed particles
in the previous example. In the block caving, a portion of the middle wall is

82 High Performance Computing and the Discrete Element Model

removed to further fracture the ore body. In contrast, in the long-wall mining
simulation, the right support wall is moved downward during the calculation.
Figures 2.24 and 2.25 show the failure process of the rock masses under these two
conditions. It can be found that the failure of the block mining is a granular-like type.
The long-wall mining method first makes fractures in the continuum and then breaks
it into blocks that will further be broken into small pieces.

Figure 2.25. Long-wall mining simulated by multi-core DICE2D. For a
color version of the figure, see www.iste.co.uk/zhao/computing.zip

Multi-core Implementation 83

2.6. Conclusion

In this chapter, DICE2D is parallelized for a multi-core PC. The Parallel
Computing Toolbox of MATLAB is used as the development tool. Both the contact
detection and the contact force calculation modules of DICE2D are parallelized.
Numerical examples show that the parallel (multi-core) DICE2D can reduce the
computational time effectively. A maximum speedup of approximately 2 can be
achieved, which is successful compared with the efforts put into the parallel
implementation. The numerical examples also verified the abilities of DICE2D on
modeling continuum deformation, granular flow and fragmentation problems.
Moreover, an empirical procedure is also presented to estimate spring stiffness from
the corresponding macro parameters (Poisson’s ratio and the elastic modulus).

3

GPU Implementation

In this chapter, DICE2D is implemented with the GPU of a computer. First, the
principle of GPU computing is introduced briefly. Then, the GPU implementation of
DICE2D is described. Finally, numerical examples are presented to show the
performance improvement and application of the GPU DICE2D.

3.1. Graphics processing unit computing

Currently, computing on a GPU chip is popular for numerical modeling in
different areas (e.g. elasticity simulation [DIC 11], fluid mechanics [HOR 11] and
black hole simulation [HER 11]). An attractive aspect of GPU computing is the
capability of parallel computing without the complex implementation of model
decomposition, communication and synchronization functions. A GPU uses multiple
threads rather than multiple CPUs for computing; this method is also called fine-
grained parallelization. Compared with a multi-core CPU, a GPU card consists of a
large number of low-level processors; for example there are 96 cores on a Quadro
600 graphics card, 512 cores on the GeForce GTX 580 graphics card and 5,760
cores on the GTX TITAN Z graphics card (www.nvidia.com). For each GPU
processor, there are several hundreds of co-resident threads that can execute integer-,
single- and double-precision calculations simultaneously. In addition, the memory
access method (e.g. memory coalescing) is specially designed in GPUs to improve
memory access performance.

GPU parallelization of various numerical methods has been implemented by
many researchers, including the molecular dynamics [AND 08, STO 10], the lattice
Boltzmann method [WAL 09, SAI 10], the FEM [JOL 10, KOM 10, DIC 11], the
boundary element method [TAK 09], the DEM [MA 11, XU 11], upper bound rigid
block analysis [POD 11], the moving particle semi-implicit method [HOR 11],

86 High Performance Computing and the Discrete Element Model

parallel drainage network computation [ORT 10] and the distinct lattice spring
model (DLSM) [ZHA 12]. The overall increases in speed using GPU parallelized
codes compared to the serial CPU counterparts are reported to be between 10- and
100-fold. However, a substantial amount of knowledge regarding GPU hardware
architecture is required to directly implement a GPU code. To overcome this
problem, several types of development tools have been designed (e.g. special
programming toolkits listed by Elsen et al. [ELS 08], including Sh (Michael
McCool, University of Waterloo), Brook (Pat Hanrahan, Stanford University), Close
to Metal (AMD) and CUDA (NVIDIA)). Among these toolkits, CUDA is the most
popular; however, it is not directly supported in MATLAB®. In this chapter, to reap
the benefit of GPU computing, DICE2D is parallelized using the Parallel Computing
Toolbox® of MATLAB.

GPU computing is based on the heterogeneous computing methodology. The
primary code runs on the CPU (i.e. the host), while the computationally expensive
components of the code run on the GPU (i.e. the device). The hardware architecture
of a GPU computer is shown in Figure 3.1. As shown in the figure, the device can be
viewed as a virtual computer that has its own separate memory space and is ideally
suited to perform arithmetic calculations using thousands or millions of elements.
The GPU and CPU are connected through a peripheral component interconnect
(PCI). In GPU implementation, there are two essential concerns: the first is how the
data between the memory of the CPU and that of the GPU should be communicated;
and the second is how the GPU should be instructed to perform the corresponding
calculations. In MATLAB, these implementations have been significantly
simplified; the Parallel Computing Toolbox of MATLAB provides GPU matrix
computing and communication functionalities. Basic calculations using a GPU
matrix are supported in MATLAB, which are in the same form as the corresponding
CPU versions. More details on GPU matrix computing can be found in the manual
of the Parallel Computing Toolbox of MATLAB.

3.2. GPU implementation of DICE2D

The GPU implementation of DICE2D is to replace corresponding matrix
calculations with GPU matrix calculations. The first step is to define the GPU
matrices. In MATLAB, there are two methods to define a GPU matrix: the first is to
define a CPU matrix initially, and then send it to the GPU and duplicate it. For
example, the code shown in Table 3.1 can be used to build a 2 × 2 GPU matrix with
zero elements.

GPU Implementation 87

Figure 3.1. Hardware configuration of the GPU computing

cpuMat=zeros(2,2)

gpuMat=gpuArray(cpuMat);

Table 3.1. Define a GPU matrix in MATLAB (Method 1)

The second method is to directly define a GPU matrix using the built-in GPU
function. One example code is shown in Table 3.2.

gpuMat=parallel.gpu.GPUArray.zeros(2,2);

Table 3.2. Define a GPU matrix in MATLAB (Method 2)

To receive data from the GPU, the code shown in Table 3.3 can be used.

gpuMat=gather (gpuMat);

Table 3.3. Read matrix from GPU to CPU in MATLAB

To show the performance improvement of the GPU computation, two example
MATLAB codes (one serial code and the corresponding GPU code) are
programmed (Table 3.4). Unlike in C++ [ZHA 12], the parallel computing settings
(e.g. number of blocks and number of threads per block) are done by MATLAB
automatically. The increased speed of the GPU code is shown in Figure 3.2. It is

88 High Performance Computing and the Discrete Element Model

shown that the GPU code obtained a maximum speed increase of approximately
sixfold. When the array size is too small or too large, the performance of the GPU
code tends to decrease, which might be because the communication between the
CPU and the GPU requires more computation time than the benefit that the GPU
computation provides under these conditions.

CPU code GPU code
function TestCPU01(N) function TestGPU(N)
tic; tic;

X=linspace(0,2*pi,N); gpuX=parallel.gpu.GPUArray.linspace(0,2*pi,N
);

A=sin(X); gpuA=sin(gpuX);
toc; A=gather(gpuA);
 toc;

Table 3.4. Example CPU and GPU codes in MATLAB

Figure 3.2. Speedup of example GPU codes (Quadro K2100M)

This example shows that GPU computation can improve the performance of a
code in MATLAB and also verifies that the GPU functions provided in the Parallel

GPU Implementation 89

Computing Toolbox of MATLAB are effective; these functions will thus be used to
parallelize the DICE2D code to the GPU chip. The motion update procedure of
DICE2D can be directly modified into the GPU codes. For example, the position
update of the particles in DICE2D and the corresponding GPU version are shown in
Table 3.5.

CPU code GPU code
%Position Update %Position Update
X=X+Vx*DeltT; gpuVx=gpuArray(Vx);
Y=Y+Vy*DeltT; gpuVy=gpuArray(Vy);
T=T+Vt*DeltT; gpuVt=gpuArray(Vt);
 gpuX=gpuX+gpuVx*DeltT
 gpuY=gpuY+gpuVy*DeltT
 gpuT=gpuT+gpuVt*DeltT
 X=gather(gpuX)
 Y=gather(gpuY)
 T=gather(gpuT)

Table 3.5. GPU implementation of position update calculation in DICE2D

CPU code GPU code
for j=1:NumP for k=1:MAX_Pn

for k=1:MAX_Pn if gpuTagPP_C(k)
jP=PP_C(k,j) %From CPU to GPU
if jP>0 XX1=X(gpuPP_C(k,:));

R1=R(j) YY1=Y(gpuPP_C(k,:));
R2=R(jP) RR1=R(gpuPP_C(k,:));
Xdef=X(jP)-X(j) VXX1=Vx(gpuPP_C(k,:));
Ydef=Y(jP)-Y(j) VYY1=Vy(gpuPP_C(k,:));

... VTT1=Vt(gpuPP_C(k,:));
end ...

end % Calculate in GPU
end gpuXdef=gpuXX1-gpuX;
 gpuYdef=gpuYY1-gpuY;
 ...
 %From GPU to CPU
 DL=gather(gpuD);
 for j=1:NumP
 jP=PP_C(k,j);
 if jP>0
 ...
 end
 end
 end

Table 3.6. GPU implementation of the contact force calculation in DICE2D

90 High Performance Computing and the Discrete Element Model

For some parts of DICE2D, the GPU implementation cannot be directly
conducted as shown in Table 3.5; more complex treatments are required. For
example, Table 3.6 shows the GPU implementation of the contact force calculation
in DICE2D with modifications. Instead of processing each particle separately, the
GPU code performs matrix operations for all of the particles in each contact layer.
The mathematical operations such as cos and sin are calculated as matrix operations
in the GPU. The majority of the computation is performed in the GPU rather than in
the CPU. The GPU computation results are collected into CPU matrices for further
analysis. Other parts of the DICE2D code are not converted into GPU versions due
to the presence of many logical operations, which are not computed more quickly in
the GPU. The algorithm of the CPU code with regard to memory operation is
suitable for multi-core computers but not for GPU computation, and vice versa.

Figure 3.3. Computational time of the multi-core DICE2D, GPU DICE2D, and GPU
and multi-core DICE2D codes for the uniaxial compression test

Owing to the presence of many logical operations in the contact detection
computation, it is difficult and inefficient to implement this algorithm in the GPU;
however, this algorithm can still be parallelized using parfor. The uniaxial
compression test shown in Figure 2.3 is used to test the performance of the GPU
DICE2D code. For comparison, the multi-core DICE2D using different number of
workers (i.e. zero refers to the serial DICE2D), GPU DICE2D, and GPU and multi-
core DICE2D (contact detection is parallelized for multi-core CPU) codes are used
to solve the same problem with different number of particles. The computational

GPU Implementation 91

time of these codes is shown in Figure 3.3. Overall, the GPU DICE2D code is
completed in less time than the multi-core (i.e. parallel) DICE2D code. However,
when the GPU and multi-core parallelization are mixed together, the performance is
not improved, as expected, due to competition between the GPU and the multi-core
functions in MATLAB (e.g. communication between the different workers influence
the communication between the CPU and the GPU). This example shows that
putting more computational resources together will not always improve the
computational performance. Nevertheless, from this example, it can also be
concluded that the GPU implementation of the DICE2D code is successful.

Figure 3.4. Fracturing pattern obtained from the multi-core DICE2D and GPU DICE2D
codes. For a color version of the figure, see www.iste.co.uk/zhao/computing.zip

The simulation results of the GPU code on a fracturing pattern might be different
from those of the CPU version [ZHA 12]. The long-wall mining example was solved
using the GPU DICE2D code, and the simulation results are shown in Figure 3.4. It

92 High Performance Computing and the Discrete Element Model

is shown that the same failure pattern is obtained,which might be because in this
study, a double-precision variable is used whereas a single-precision variable was
used in a study conducted by Zhao and Khalili [ZHA 12]. The GPU DICE2D code
was not parallelized for the contact detection calculation; therefore, it might be
inefficient for problems involving large number of contact detections, such as
granular flow–like problems.

3.3. Examples

In Chapter 2, numerical examples are mainly presented to show the ability of the
DICE2D code to model continuum problems. The relationship between the spring
stiffness and the macro elastic parameters is presented. However, the mechanical
parameters related to failure are not considered. In this section, a number of
numerical examples of failure are presented to study the ability of the DICE2D code
to model direct tension failure, indirect tension failure, uniaxial compression failure
and triaxial compression failure.

3.3.1. Uniaxial tension test

Tension failure is the most common and simple failure type observed in both
nature and engineering. In DEM, the tensile strength is the first strength
parameter that must be calibrated. Owing to the limitations of available
experimental data with regard to uniaxial tension tests, many researchers have
used the indirect tension test to find the micro tension parameter corresponding
to the macro experimental value (e.g. [KAZ 13]); however, in some studies, the
uniaxial tension test was adopted (e.g. [SCH 13]). The author believes that the
uniaxial tension test performs better than the indirect tension test because the
deformation produced by the uniaxial tension test is under pure tension, whereas
the indirect tension test cannot satisfy this condition. Therefore, in this example,
the uniaxial tension test is adopted to study the tensile strength in the DICE2D
modeling. As shown in Figure 3.5, the specimen is placed between two loading
plates; the bottom plate is fixed during the calculation, whereas the upper plate
is moved with a given constant velocity. The reaction force on the upper plate is
recorded during the test to calculate the axial stress.

GPU Implementation 93

Figure 3.5. Computational model of the uniaxial tension test

Considering the characteristics of the tension loading conditions and the DEM,
the uniaxial tensile strength of a DEM specimen can be estimated by:

t
t

F
D

σ α= % [3.1]

where tσ is the uniaxial tensional strength of the DEM, tF is the tensile strength

of a normal spring, D is the mean particle diameter of the DEM and α% is a
correction coefficient close to 1.

Two DEMs with different sizes are simulated to investigate the influence of the
shape of the specimen on the macro tensile strength (Figure 3.6). The large
specimen has a dimension of 400 m × 695.5 m. Physically, it would be difficult to
build such a large model; however, in the numerical realm, it is possible to model
such large specimens. Because the primary purpose of this modeling is to discover
the relationship between the micro tensile parameter of the DEM and its macro
tensile strength, the dimension has no influence on the results. To confirm this
assumption, a much smaller model is also prepared (Figure 3.6(b)). The model
parameters used in these simulations are shown in Table 3.7.

94 High Performance Computing and the Discrete Element Model

Figure 3.6. DEMs used in the uniaxial tension tests

Number of particles 95/779 Normal viscous coefficient (s) 0.0001
Mean particle size (m) 10 Friction angle 80
Density (kg/m3) 1,000 Local damping 0.8
Normal stiffness (N/m) 1e8 Time step reduction factor 0.1
Shear stiffness (N/m) – Total steps 20,000
Tensile strength (N) 2e7 Gravity acceleration (m/s2) 0
Cohesion –

Table 3.7. Model parameters of the uniaxial tension test

Figure 3.7 shows the failure patterns of these two specimens; similar failure
patterns are observed. The stress–strain curves are shown in Figure 3.8. The
modeling results indicate that the failure patterns and tensile strengths are not
influenced by the dimensions or the height/width ratio of the specimens.

GPU Implementation 95

Figure 3.7. Failure patterns of the DEMs with different sizes

The strength of a regular triangle-packed specimen is approximately 3 MPa. The
correction coefficient %α in equation [3.1] is approximately 1.5. To investigate the
influence of particle packing on the tensile strength, an irregular-packed specimen is
used (Figure 3.9). Similar to the example given in section 2.5.1, the CN of the
specimen can be adjusted using different thresholds during bond formation. Figure
3.10 shows the failure patterns of these two specimens and indicates that the CN
does influence the failure pattern. For a low-CN specimen, a straight fracture is
shown; however, a zigzag-type fracture is observed in the specimen with a high CN.

96 High Performance Computing and the Discrete Element Model

Figure 3.8. Stress–strain curves of the DEMs of the uniaxial
tension tests using different specimens

GPU Implementation 97

Figure 3.9. Irregular particle packing specimen for the uniaxial tension test

Figure 3.10. Failure patterns of irregular-packed specimens with different CNs. For a
color version of the figure, see www.iste.co.uk/zhao/computing.zip

The stress–strain curves are shown in Figure 3.11. The low-CN specimen has a
tensile strength of approximately 2 MPa, whereas the high-CN specimen shows a
tensile strength of 2.5 MPa. The corresponding correction coefficient %α of equation
[3.1] is equal to 1.0 and 1.25, respectively. In real applications, %α can be estimated
to be 1.0 for loosely packed specimens, 1.25 for closely packed specimens and 1.50
for very closely packed specimens.

98 High Performance Computing and the Discrete Element Model

Figure 3.11. Stress–strain curves of irregular-packed specimens with different CNs

The influence of other parameters, such as the WRT, the Ks/Kn, the cohesion of
the bond and the friction of the bond, is studied. The regular triangle-packed model
shown in Figure 3.6(b) is used to reduce computational time. A total of 28 numerical
tests are performed, and the model parameters used are the same as those listed in
Table 3.7. The modified parameters except for the friction angle are dimensionless.
Figures 3.12–3.15 show the final simulation results and reveal that both the WRT
and the Ks/Kn influence the tensile strength of the model slightly. The maximum
difference is shown to be approximately 10%. Therefore, equation [3.1] can be used
only for estimation purposes.

GPU Implementation 99

Figure 3.12. Influence of the bond thickness ratio coefficient on the
uniaxial tensile strength

Figure 3.13. Influence of the shear stiffness ratio on the uniaxial tensile strength

100 High Performance Computing and the Discrete Element Model

Figure 3.14. Influence of the cohesion of the spring bond on the
uniaxial tensile strength

Figure 3.15. Influence of the friction angle of the spring bond on the
uniaxial tensile strength

GPU Implementation 101

From Figures 3.14 and 3.15, it can be concluded that under certain conditions,
the tensile strength of a DEM specimen is not influenced by the cohesion and
friction angle of the contact bond. However, if the cohesion or friction angle is less
than or greater than the critical value in which the tension cut condition will not be
satisfied, the bond might fail under shear based on the micro Mohr–Coulomb model.
For most brittle materials, tension failure is the primary failure mode. The parameters
shown in Figures 3.14 and 3.15 can be used to provide additional constraints to the
selection of the friction angle and the cohesion parameters for a spring bond.

3.3.2. Brazilian disk test

Owing to the convenience of its specimen preparation, the Brazilian disk test has
become a widely used test method in rock mechanics to determine the tensile
strength of a material, although there are still many debates over the validity of the
testing results [LI 13]. As shown in Figure 3.16, the numerical experimental setup of
the Brazilian disk test is simple: there are two loading plates and a disk specimen
(i.e. cylindrical specimen in a real test). During the test, the reaction force of the
upper plate is recorded, and the tensile strength is obtained using the following
equation:

max2
t

F
DL

σ
π

= [3.2]

where L is the length/thickness of the specimen, D is the diameter and Fmax is the
peak value of the loading force. The adopted DEM is shown in Figure 3.17. The
diameter is 400 m, which is large compared with a real experiment. The primary
purpose is to obtain the relative relationship between the indirect tensile strength of
the DEM and the uniaxial tensile strength. Therefore, the influence of the
dimensions of the specimen can be ignored. Two walls are used to simulate the
loading plates. The material parameters of the specimen are considered to be the
same as those in the previous example. Two threshold values are used to produce
specimens with different CNs. Figure 3.18 shows the failure patterns of these two
specimens; the failure pattern of the specimen is shown to be significantly
influenced by the CN. For the specimen with a low CN, the failure zone is at the
bottom, whereas for the specimen with a high CN it is at the top. The fracture
surface also appears straighter when the CN is high. The loading curves are also
shown in Figure 3.19, which shows that a higher strength is obtained for specimens
with higher CNs. The corresponding indirect tensile strengths of the specimens are
found to be 1.00 and 1.23 MPa, respectively, which are approximately half of the
uniaxial tensile strength of the materials considered. On the basis of the work of Li
and Wong [LI 13], these values represent the lowest of the experimentally observed
values of the ratio between the indirect and the direct tensile strengths (e.g. 0.5–2.0).

102 High Performance Computing and the Discrete Element Model

Figure 3.16. Geometry model and loading condition of a Brazilian disk test

Figure 3.17. DEM of the Brazilian disk test

Figure 3.18. Failure pattern of the specimen with different CNs. For a color version of
the figure, see www.iste.co.uk/zhao/computing.zip

GPU Implementation 103

Figure 3.19. Stress–strain curves of the Brazilian disk test

104 High Performance Computing and the Discrete Element Model

The effects of the micro parameters on the indirect tensile strength are
determined to describe whether the indirect tensile strength will appear with the
same tendency as it occurs when the micro parameters change. Figures 3.20 and
3.21 show the influence of the WRT and Ks/Kn on the indirect tensile strength. With
an increase of the WRT, the indirect tensile strength decreases. Compared to Figures
3.12 and 3.13, it can be concluded that the indirect tensile strength can reflect a
change in the WRT and Ks/Kn in the same way as does the uniaxial tensile strength.
Therefore, the indirect tensile strength can still be used to calibrate the tensile
strength; however, in DEM simulations, this difference should be considered.

Figure 3.20. Influence of the bond thickness ratio on the indirect tensile strength

Figure 3.21. Influence of the shear stiffness ratio on the indirect tensile strength

GPU Implementation 105

3.3.3. Uniaxial compressive strength test

The uniaxial compressive strength (UCS) test is another widely used calibration
test in DEM simulations. In this example, the GPU DICE2D code is used to model a
UCS test. The experimental setup and the DEM are shown in Figure 3.22. The
irregular-packed specimen with a CN of 5.0788 is used. Model parameters are
selected to be the same as those in the previous example. The simulation results are
shown in Figure 3.23.

The failure pattern of the specimen is commonly observed in the UCS test (see
Figure 3.23). The simulated compressive strength is 8 MPa. The ratio between the
compressive strength and the indirect tensile strength is found to be approximately
7, whereas the ratio between the compressive strength and the uniaxial tensile
strength is found to be in the range of 3–4. Therefore, the ratio problem in the DEM
code still exists in the DICE2D code which can be solved using the clump or cluster
particle scheme. Considering the Poisson’s ratio and the current results, the solution
provided by Scholtes and Donze [SCH 13] seems to not fully solve the ratio problem
of the DEM code; for example increasing the compressive-to-tensile-strength ratio
to a realistic value using a high-CN specimen might result in the Poisson ratio
limitation problem (Figure 2.13).

Figure 3.22. Loading configuration and DEM of the uniaxial compression test

106 High Performance Computing and the Discrete Element Model

Figure 3.23. Failure pattern of the specimen and loading curve of the UCS test. For a
color version of the figure, see www.iste.co.uk/zhao/computing.zip

The parameter analysis of the UCS test is shown in Figures 3.24 and 3.25. As
expected, the compressive strength increases with the increase in friction angle;
bond cohesion is also shown to first increase with the cohesion and reach a stable
value (Figure 3.25). Therefore, if the friction angle is determined, the compressive
strength can be used to determine the cohesion.

Figure 3.24. Influence of the friction angle on the compressive strength

GPU Implementation 107

3.3.4. Triaxial compressive test

The triaxial compression test (Figure 3.26) is simulated to obtain the relationship
between the input micro friction angle and the macro observed friction angle. To
apply a confining pressure onto the walls of the specimen, a force boundary
condition is used; the idea behind this approach is to give the wall with mass and
allow it to affect the calculations in Newton’s second law of motion. During these
calculations, the mass walls are treated like flat particles. The same particle model as
that used in the previous example was used in the triaxial tests. One modeling result
is shown in Figure 3.27. With increasing confining pressure, the strength increases,
and the post-peak strength becomes smooth with a residual strength, as commonly
observed in real experiments. Figure 3.28 shows the failure patterns of the
specimens with different confining pressures, which are shown to influence the
failure pattern of the specimen. With the results from a number of numerical tests,
the failure envelope of the DEMs with different input friction angles can be obtained
(Figure 3.29). The relationship between the macro friction and micro friction angles
is shown in Figure 3.30. It can be found that in DEM simulations, the input friction
angle does not equal the macro observed friction angle; for example when a zero
friction angle is used as the micro input, the macro friction angle is found to be
approximately 20°.

Figure 3.25. Influence of the cohesion of spring bond on the uniaxial
compressive strength

108 High Performance Computing and the Discrete Element Model

Figure 3.26. Model configuration of the triaxial test

Figure 3.27. Loading curve of the triaxial test with a confining pressure of 1.5 MPa

GPU Implementation 109

Figure 3.28. Failure patterns of specimens under different confining pressures. For a
color version of the figure, see www.iste.co.uk/zhao/computing.zip

110 High Performance Computing and the Discrete Element Model

Figure 3.29. Failure envelope of the DEM with different friction angles

Figure 3.30. Relationship between the input micro friction angle and the output
macro friction angle of the DEM

GPU Implementation 111

3.4. Conclusion

The DICE2D code is parallelized on a GPU chip by replacing certain CPU
matrix operations with GPU matrix operations using the Parallel Computing
Toolbox of MATLAB. From the modeling results, the GPU DICE2D code is shown
to provide better performance than the multi-core DICE2D code; however, this
performance improvement is not as significant as other classical GPU parallelization
procedures. The reason for this outcome is that the GPU implementation using
MATLAB is a high-level parallelization. Multiple numerical examples are
investigated using the GPU DICE2D code to determine the relationship between the
micro and macro spring failure parameters. From these examples, a calibration
procedure is suggested: first, the tensile strength can be obtained using a uniaxial or
indirect tension test; then, the cohesion can be obtained from a UCS test. Finally, the
friction angle can be determined using TCS test data.

4

 DICE2D and Cluster

A cluster is a collection of computers connected through a high-speed network
that allows them to work together to solve a problem. The newly developed
technologies of HPC (e.g. multi-core CPUs and GPUs) can be easily integrated into
a cluster using a modular concept. A cluster usually uses a distributed memory
system; therefore, model decomposition and communications between different
processors (i.e. computer nodes) are required to be handled explicitly in the parallel
code for a cluster. In the implementation, the MPI1 and the parallel virtual machine2
are two commonly used programming tools. The Parallel Computing Toolbox® of
MATLAB®, which is a high-level programming environment, was used for the
implementation of the multi-core (parallel) DICE2D code and produced a
parallel DICE2D code that was independent of the operating system and parallel
hardware. In this study, the parallel DICE2D code uses the computational resources
of a moderate-sized cluster to simulate certain rock engineering problems. In
Chapter 3, the GPU DICE2D code showed better performance than the parallel
DICE2D code (Figure 3.3). In this Chapter, the parallel DICE2D code runs on a
moderate-sized cluster called “Leonardi”. The results show that the performance of
the parallel DICE2D code is significantly influenced by the hardware platform.
There are some negative comments on the Parallel Computing Toolbox of
MATLAB; for example a comment3 from MIT in 2011 indicated that it was “more
trouble than it is worth”. From the evidence shown in this chapter, a more positive
review might be concluded.

1 http://www.mpi-forum.org/ (accessed on 01-03-2015).
2 http://www.csm.ornl.gov/pvm/ (accessed on 01-03-2015).
3 http://tig.csail.mit.edu/wiki/TIG/DistributedComputingWithMATLAB (accessed on
01-03-2015).

114 High Performance Computing and the Discrete Element Model

4.1. Leonardi cluster

The Leonardi cluster at UNSW consists of 2,944 AMD Opteron 6174 2.20-GHz
processors. The cluster has a total of 5.8-TB physical memory and a 100-TB hard
disk storage (each core has approximately 2 GB memory). MATLAB2014b is
available on the cluster; this program is adopted as the running environment for the
parallel DICE2D. The laptop accessing the cluster runs on a Windows operating
system, whereas the cluster uses a Linux operating system. To connect to the cluster
from the laptop, PuTTY software is used. Figure 4.1 shows the interface of PuTTY.
Instructions for using PuTTY are available at www.putty.org. A quick operation of
PuTTY is explained as follows. The first step is to input the name of the cluster, for
example leonardi.eng.unsw.edu.au, into the text box for the host name; the port
number is set to 22 as default (see Figure 4.1). Then, the Open button is clicked, and
a command window will popup. The user name and password are entered. Finally,
PuTTY will access the head node of the cluster. A front message
(username@hostname) will be displayed to indicate the success of the connection.
However, computations cannot be performed on the head node, and computing
resources must be allocated using a Portable Batch System (PBS) job script.

Figure 4.1. PuTTY interface

DICE2D and Cluster 115

4.2. Run DICE2D on cluster

To run the program on the cluster, the first step is to upload the parallel DICE2D
folder to the cluster. WinSCP4 is used for this step. After the parallel DICE2D is
uploaded to the cluster, the following command is run (Figure 4.2):

qsub -l nodes=1:ppn=48,mem=90gb,vmem=90gb,walltime=0:30:00 -q debug -I

This command requests a computer node with 48 cores together with physical
memory of 90 GB and virtual memory of 90 GB. The requested computational time
(wall time) is one half-hour. The type of queue requested is a debug queue.

When the computational resources are allocated successfully, the cluster will
display a message (e.g. job 46041.leonardi.eng.unsw.edu.au ready) (see Figure 4.2).
The name of the allocated computer node will replace the head node name. For
example the allocated node in Figure 4.2 is ec01b01. Before running the parallel
DICE2D, the module should be confirmed to be present on the cluster using the
command: module available. If MATLAB is in the list, then the next step is to load
MATLAB into the work environment. To load MATLAB, we use the module load
command. Finally, copyright information for MATLAB will be displayed as in
Figure 4.2. The MATLAB scripts used to run the parallel DICE2D are also shown in
Figure 4.2. The example used 10 cores for the simulation. The uniaxial compression
test of a regular-packed specimen is adopted to determine the performance of the
parallel DICE2D on the cluster. Two models are run: one model has 10,000 particles
and the other has 40,000 particles. The computational time required for the parallel
DICE2D and the GPU DICE2D are plotted in Figure 4.3. The solid line represents
the computational time of the GPU DICE2D for a DEM with 10,000 particles,
whereas the dashed line refers to the computational time of the DEM with 40,000
particles. Different numbers of cores are used by the parallel DICE2D on the cluster.
However, because of the limitation of available memory (90 GB), the maximum
number of cores is selected as 20.

From Figure 4.3, it is clear that the parallel DICE2D shows a better performance
than the GPU DICE2D. The optimal number of cores is around 10. The parallel
DICE2D that uses the Parallel Computing Toolbox of MATLAB performs faster
than the GPU DICE2D. However, when the number of cores exceeds 10, the
performance decreases with the increase in the number of cores. Therefore, parallel
DICE2D still does not fully use the computational resources of a cluster. This
problem might be solved using a future Parallel Computing Toolbox of MATLAB.

4 www.winscp.net

116 High Performance Computing and the Discrete Element Model

Figure 4.2. Running the parallel DICE2D on Leonardi

DICE2D and Cluster 117

Figure 4.3. Performance of parallel DICE2D running on a cluster

4.3. Numerical examples

4.3.1. Collapse of trees under gravity

In this section, a similar problem to the tree collapse problem described in
Chapter 2 is simulated. An image-based modeling technique is adopted to construct
a computational model of three trees (Figure 4.4). These trees will collapse under
gravity. The main purpose of the example in section 2.5.3 was to determine the
ability of DICE2D on a granular flow that is dominated by a dynamic contact. In this
example, the bond constitutive model is used. The WRT is set to 0.8. The
corresponding model is a cohesive material model. The model and the material
parameters are shown in Table 4.1. The simulation results are shown in Figure 4.5.
These trees will initially undergo large deformation. Fragmentations are then formed
when the deformation exceeds a certain value. In addition, these irregular fragments
will move under gravity. This example shows the ability of DICE2D to model large
deformations, fragmentations and irregular granular flows. These processes are
typical phenomena in rock engineering applications such as block caving.

118 High Performance Computing and the Discrete Element Model

Figure 4.4. Computational model for the three trees collapsing problem

Number of particles 2,539 Normal viscous coefficient (s) 0.001
Mean particle size (m) 10 Friction angle 60
Density (kg/m3) 1,000 WRT 0.8
Normal stiffness (N/m) 1e8 Local damping 0.01
Shear stiffness (N/m) 1e7 Time step reduction factor 0.1
Tension strength (N) 5e8 Total steps 10,000
Cohesion (N) 10e8 Gravitational acceleration (m/s2) 10

Table 4.1. Model parameters for the trees collapsing problem

4.3.2. Rock cutting

Rock cutting is a typical problem that can be regarded as a sign of human
civilization. In the past century, multiple studies investigated rock cutting.
Theoretical models based on mechanical analyses were developed to predict the
cutting force. In addition, experimental investigations were carried out to determine
the essential cutting parameters. However, because of the limitations of continuum
mechanics on fracturing and fragmentation analyses, these models on rock cutting
remain mainly empirical. With the development of computational technology,
numerical methods provide a powerful tool to study rock cutting. In this
investigation, a typical example is simulated using the parallel DICE2D. The
computational model is shown in Figure 4.6. A rock block of dimension 200 m ×
400 m is cut by a rigid cutter. The cutter is represented by an inclined wall with an
angle of 30° between the horizontal line. The cutting velocity is selected as 5 m/s
and applied in the horizontal direction. The upper portion of the block is expected to
be cut into rock fragments. The model and material parameters are listed in Table 4.2.

DICE2D and Cluster 119

Figure 4.5. Collapse process for the three trees under gravity using parallel DICE2D.
For a color version of the figure, see www.iste.co.uk/zhao/computing.zip

120 High Performance Computing and the Discrete Element Model

Figure 4.6. Computational model for the rock
cutting problem

Number of particles 2,843 Normal viscous coefficient (s) 0.0
Mean particle size (m) 3.4 Friction angle 30

Density (kg/m3) 1,000 WRT 0.1
Normal stiffness (N/m) 1e8 Local damping 0.01
Shear stiffness (N/m) 3e7 Time step reduction factor 0.1

Tension strength (N) 4e7 Total steps 10,000
Cohesion (N) 2e8 Gravitational acceleration (m/s2) 10

Table 4.2. Model parameters for the rock
cutting problem

Figure 4.7 shows the simulated rock cutting process. Fractures form before the
cutter reaches the fracture front. After a chip is formed, other cracks will form
(see Figure 4.7). By repeating the process, rock fragments are formed. The cutting
depth, cutting velocity and cutting angle will influence the cutting profile, cutting
force and cutting energy. Relationships between these variables can be obtained
from a parameter analysis using the parallel DICE2D.

DICE2D and Cluster 121

Figure 4.7. Simulation results for the rock cutting using DICE2D. For a color version
of the figure, see www.iste.co.uk/zhao/computing.zip

122 High Performance Computing and the Discrete Element Model

4.3.3. Slope stability analysis

In this example, a rock slope stability problem is solved using DICE2D. The
slope will fail under gravity because of external loading such as earthquakes or a
change of the material properties due to environmental or human activities. Classical
analysis methods, such as the limited equilibrium analysis [DUN 96], cannot
provide for failure processes and failure patterns of the slope. These previous
methods might result in overly conservative designs that consume more money than
necessary, or, in the worst case, an underestimated safety factor (SOF) design would
endanger the slope and potentially cause the loss of properties and lives. Two
classical approaches are available for numerical simulations to obtain the failure
process of a slope. In the first approach,the strength reduction method [DAW 99],
the design material properties are inputted as initial parameters. The external loading
is kept constant during calculation. Then, by decreasing the properties of the input
material, the computational model will fail when a parameter (strength) is less than a
certain value. The ratio between the critical value and the design value is calculated
as the SOF. However, the strength reduction method is feasible only for
computational models with single or a few adjustable mechanical parameters. The
other approach is the gravity increase method [LI 09], which can be regarded as a
numerical simulation of a centrifuge test. In this method, the design parameters of
material are kept constant during calculation, whereas the gravitational acceleration
increases. The model will fail under a certain gravitational acceleration, for example
xg. Then, x is estimated as the SOF. The gravity increase method is useful for
engineering projects with failure processes dominated by gravitational force.

In this section, a rock slope is simulated using DICE2D (Figure 4.8). The
dimension of the slope is approximately 700 m × 400 m (the details are displayed in
Figure 4.8). The slope comprises three parts: the base rock, the weak layer and the
top slope block. A total of 9,129 particles are present in the model. The model
parameters and mechanical properties of the corresponding materials are listed in
Tables 4.3 and 4.4, respectively. The bottom, left and right of the model are fixed by
three walls. A measuring point is established at the top surface to record the
settlement history under different gravitational accelerations. Figures 4.9 and 4.10
show the modeling results for the rock slope under different gravitational
accelerations. The slope fails under gravity. A small portion of the weak layer fails
under 3g. Then, a main fracture forms along the weak layer under 5g (see Figure 4.9).
Finally, the slope will slide along the failure surface under 7g and 8g
(see Figure 4.10). This result is a typical slope failure pattern. To obtain a more
quantitative observation, the settlement history of the measured point is shown in
Figure 4.11. The settlement is stable when the acceleration is less than 4g.
Therefore, the SOF of the slope is approximately 4.

DICE2D and Cluster 123

Figure 4.8. Computational model for the slope stability problem. For a color version
of the figure, see www.iste.co.uk/zhao/computing.zip

Number of particles 10,951/10,966 Time step reduction factor 0.1
Mean particle size (m) 2.5 Total steps 40,000
Local damping 0.8 Gravitational acceleration (m/s2) 10

Table 4.3. Model parameters for the slope stability problem

ID Density
(kg/m3)

Normal
stiffness
(N/m)

Shear
stiffness
(N/m)

Tension
strength (N)

Cohesion
(N)

Friction
angle (°)

1 2,000 1.0e9 0.3e9 3.2e8 2.4e8 60
2 2,000 1.0e9 0.3e9 3.2e8 2.4e8 60
3 2,000 3.0e8 0.9e8 0 0 10
4 3,000 1.0e10 3.0e9 2e10 2.4e8 30

Table 4.4. Material parameters for the slope stability problem

124 High Performance Computing and the Discrete Element Model

Figure 4.9. Slope configurations under different gravitational accelerations (3g and
5g). For a color version of the figure, see www.iste.co.uk/zhao/computing.zip

DICE2D and Cluster 125

Figure 4.10. Slope configurations under different gravitational accelerations
(7g and 8g). For a color version of the figure, see www.iste.co.uk/zhao/computing.zip

126 High Performance Computing and the Discrete Element Model

Figure 4.11. History of the displacement in the y-direction of the measured
point of the slope

In real engineering applications, one common method used to reinforce a slope is
installing rock bolts. As shown in Figure 4.12, the slope model in Figure 4.8 is
enriched using rock bolts. The model parameters and material parameters are taken
to be identical as the previous model. The mechanical properties of the rock bolt are
adopted as a material with ID 4. A higher strength and elastic modulus are used (see
Table 4.4). The rock bolt is simulated using a group of bonded particles. The
detachment and sliding between the rock bolt and rock are considered through
interactions between particles of the rock and rock bolt. Because the rock bolt is
approximated using a particle model, this method is only a preliminary analysis. The
main purpose of this method is to show the ability of DICE2D to model reinforced-
slope stability problem. Figure 4.13 shows the history of settlement at the measured
point under different gravitational accelerations. A stable solution is obtained for the
reinforced slope even under 8g. Moreover, the displacement contours of the slope
under the corresponding gravitational accelerations are shown in Figures 4.14 and
4.15. The slope remains intact under 8g; only some local failures are noted.
Therefore, the rock bolt reinforced slope is safer than the original slope. In addition,
rock bolting is a useful method for reinforcing the rock slope.

DICE2D and Cluster 127

Figure 4.12. Computational model for the rock bolt reinforced rock slope. For a color
version of the figure, see www.iste.co.uk/zhao/computing.zip

Figure 4.13. History of the displacement in the y-direction of the reinforced slope

128 High Performance Computing and the Discrete Element Model

Figure 4.14. Configurations of a slope with rock bolts under different gravitational
accelerations (3g and 5g). For a color version of the figure, see

www.iste.co.uk/zhao/computing.zip

DICE2D and Cluster 129

Figure 4.15. Configurations of a slope with rock bolts under different gravitational
accelerations (7g and 8g). For a color version of the figure,

see www.iste.co.uk/zhao/computing.zip

130 High Performance Computing and the Discrete Element Model

4.3.4. Interaction between ground structure and underground structure

In this example, a ground structure and underground structure interaction
problem is simulated using DICE2D. The computational model is shown in Figure
4.16. A megaframe structure is built on the base rock; the base comprises two intact
blocks with a weak fault. To investigate the influence of the underground structure,
another computational model with an underground cavern is constructed (Figure 4.17).
A large cavern is excavated just below the megaframe structure. The digital image
modeling technique was adopted in this example as well. The model and material
parameters are listed in Tables 4.5 and 4.6, respectively.

Figure 4.16. Computational model of the interaction problem without an underground
cavern. For a color version of the figure, see www.iste.co.uk/zhao/computing.zip

Number of particles 9,129 Time step reduction factor 0.1
Mean particle size (m) 2.5 Total steps 40,000
Local damping 0.8 Gravitational acceleration (m/s2) 10

Table 4.5. Model parameters for the structure–tunnel interaction problem

DICE2D and Cluster 131

Figure 4.17. Computational model of the interaction problem with an
underground cavern. For a color version of the figure, see

www.iste.co.uk/zhao/computing.zip

ID Density
(kg/m3)

Normal
stiffness
(N/m)

Shear
stiffness
(N/m)

Tension
strength
 (N)

Cohesion
 (N)

Friction
angle (°)

1 1,000 4.00e8 1.20e8 6e8 7.2e6 30
2 1,000 3.20e8 0.96e8 1.2e8 7.2e6 30
3 1,000 2.00e8 0.60e8 3.6e6 7.2e6 10
4 1,000 4.00e9 1.20e8 1.2e13 7.2e7 30

Table 4.6. Material parameters for the structure–tunnel interaction problem

The gravity increase method (numerical centrifuge test) was used to obtain the
failure pattern and the SOF of these two models. The simulation results of the
ground structure without a cavern are shown in Figures 4.18 and 4.19. When the
gravitational acceleration is 1g, the settlement along the y-direction is stable (see
Figure 4.18(a)). The biggest displacement occurs at the upper right part of the

132 High Performance Computing and the Discrete Element Model

megaframe structure. As shown in Figure 4.18(a) and (b), the displacement
distribution pattern does not change under gravitational accelerations of 2g and 3g.
When the gravitational acceleration is 4g, both the structure and the base will
fracture (see Figure 4.19(b)). The building is broken around the upper right part
(the maximum deformation zone). The interface between the fault and the base rock
is also damaged. The SOF of the computational model is estimated to be
approximately 3.0.

Figure 4.18. Displacement in the y-direction of the model under gravitational
accelerations of 1g and 2g. For a color version of the figure,

see www.iste.co.uk/zhao/computing.zip

DICE2D and Cluster 133

Figure 4.19. Displacement in the y-direction of the model under gravitational
accelerations of 3g and 4g. For a color version of the figure,

see www.iste.co.uk/zhao/computing.zip

The simulation results of the computational model with an underground cavern are
shown in Figures 4.20 and 4.21. The model is stable under a gravitational
acceleration of 1g. The displacement distribution in the y-direction is shown in
Figure 4.20(a). The main settlement happens in the right-hand corner of the ground
structure and the upper part of the cavern. The cavern collapses under a gravitational

134 High Performance Computing and the Discrete Element Model

acceleration of 2g (see Figure 4.20(b)). When the gravitational acceleration is 3g, the
cavern will completely fail, and fractures reach the upper ground. The base of the
structure is also influenced. Both the ground structure and the cavern are completely
broken under gravitational acceleration of 4g (Figure 4.21(b)). From the modeling
results, the SOF of the second model is approximately 1. Therefore, the underground
excavation can substantially affect the safety of a ground structure, which must be
considered carefully during applications.

Figure 4.20. Displacement distribution and failure pattern of the model with a cavern
under gravitational accelerations of 1g and 2g, respectively. For a color version of the

figure, see www.iste.co.uk/zhao/computing.zip

DICE2D and Cluster 135

Figure 4.21. Displacement distribution and failure pattern of the model with a cavern
under gravitational accelerations of 3g and 4g, respectively. For a color version of the

figure, see www.iste.co.uk/zhao/computing.zip

136 High Performance Computing and the Discrete Element Model

4.4. Conclusion

In this chapter, the parallel DICE2D was run on a middle-sized cluster. The
parallel DICE2D developed in the MATLAB environment can directly use the
computational resources on the cluster. The parallel DICE2D shows a better
performance than the GPU DICE2D when run on a cluster. The parallel DICE2D is
also used to solve some rock engineering problems. The trees collapse problem
considers large deformations, fragmentations and irregular particle interactions. The
rock cutting problem shows the ability of DICE2D to model multiple crack
interactions and the fragmentation of rock. The slope stability problem and ground
structure interaction problem are also solved using the parallel DICE2D. Both
realistic failure patterns and SOFs are obtained.

Bibliography

[ABE 04] ABE S., PLACE D., MORA P., “A parallel implementation of the lattice solid model
for the simulation of rock mechanics and earthquake dynamics”, Pure and Applied
Geophysics, vol. 16, no. 11-12, pp. 2265-2277, 2004.

[AND 08] ANDERSON J.A., LORENZ C.D., TRAVESSET A., “General purpose molecular
dynamics simulations fully implemented on graphics processing units”, Journal of
Computational Physics, vol. 227, no. 10, pp. 5342-5359, 2008.

[BRO 08] BROWN E.T., Estimating the Mechanical Properties of Rock Masses, SHIRMS, 2008.

[CAM 13] CAMONES L.A.M., VARGAS E.D.A., DE FIGUEIREDO R.P., et al., “Application of the
discrete element method for modeling of rock crack propagation and coalescence in the
step-path failure mechanism”, Engineering Geology, vol. 153, no. 8, pp. 80-94, 2013.

[CHA 06] CHANG V., “Experiments and investigations for the personal high performance
computing (HPC) built on top of the 64-bit processing and clustering systems”, 13th
Annual IEEE International Symposium, Germany, pp. 27-30, 2006.

[CHO 07] CHO N., MARTIN C.D., SEGO D.C., “A clumped particle model for rock”,
International Journal of Rock Mechanics and Mining Sciences, vol. 44, pp. 997-1010,
2007.

[CUN 71] CUNDALL P.A., “A computer model for simulating progressive, large-scale
movements in blocky rock systems”, Proceedings of the Symposium of International
Society of Rock Mechanics, vol. 2, no. 8, pp. 2-8, 1971.

[CUN 01] CUNDALL P.A., “A discontinuous future for numerical modelling in
geomechanics?”, Proceedings of the Institution of Civil Engineers-Geotechnical
Engineering, vol. 149, no. 1, pp. 41-47, 2001.

[DAW 99] DAWSON E.M., ROTH W.H., DRESCHER A., “Slope stability analysis by strength
reduction”, Geotechnique, vol. 49, no. 6, pp. 835-840, 1999.

[DIC 96] DICK B., JACQUELINE F., BRADFORD N., pThreads Programming, O’Reilly Media, 1996.

138 High Performance Computing and the Discrete Element Model

[DIC 11] DICK C., GEORGII J., WESTERMANN R., “A real-time multigrid finite hexahedra
method for elasticity simulation using CUDA”, Simulation Modelling Practice and
Theory, vol. 19, no. 2, pp. 801-816, 2011.

[DOW 99] DOWDING C.H., DMYTRYSHYN O., BELYTSCHKO T.B., “Parallel processing for a
discrete element program”, Computers and Geotechnics, vol. 25, no. 4, pp. 281-285, 1999.

[DUN 96] DUNCAN J.M., “State of the art, limit equilibrium and finite-element analysis of
slopes”, Journal of Geotechnical Engineering, vol. 122, no. 7, pp. 577-596, 1996.

[ELS 08] ELSEN E., LEGRESLEY P., DARVE E., “Large calculation of the flow over a
hypersonic vehicle using a GPU”, Journal of Computational Physics, vol. 227, no. 24,
pp. 10148-10161, 2008.

[FAN 11] FANG H.F., TADE M.O., LI Q., “A numerical study on the role of geometry
confinement and fluid flow in colloidal self-assembly”, Powder Technology, vol. 214, no.
3, pp. 283-291, 2011.

[GOP 13] GOPALAKRISHNAN P., TAFTI D., “Development of parallel DEM for the open source
code MFIX”, Powder Technology, vol. 235, pp. 33-41, 2013.

[HER 11] HERRMANN F., SILBERHOLZ J., TIGLIO M., “Black hole simulations with CUDA”, in
HWU W.-M.W., GPU Computing Gems, Elsevier, pp. 103-111, 2011.

[HOR 11] HORI C., GOTOH H., IKARI H., et al., “GPU-acceleration for moving particle semi-
implicit method”, Computers and Fluids, vol. 51, no. 1, pp. 174-183, 2011.

[HRE 41] HRENNIKOFF A., “Solution of problems of elasticity by the framework method”,
ASME Journal of Applied Mechanics, vol. 8, pp. A619-A715, 1941.

[HUG 80] HUGHES T.J.R., WINGET J., “Finite rotation effects in numerical integration of rate
constitutive equations in large deformation analysis”, International Journal of Numerical
Methods in Engineering, vol. 15, pp. 1862-1867, 1980.

[ITA 08] ITASCA, PFC2D (Particle Flow Code in 2 Dimensions) Version 4.0, IGC,
Minneapolis, MN, 2008.

[JIA 05] JIANG M.J., YU H.S., HARRIS D., “A novel discrete model for granular material
incorporating rolling resistance”, Computers and Geotechnics, vol. 32, no. 5, pp. 340-357,
2005.

[JOL 10] JOLDES G.R., WITTEK A., MILLER K., “Real-time nonlinear finite element
computations on GPU – Application to neuro surgical simulation”, Computer Methods in
Applied Mechanics and Engineering, vol. 199, no. 49-52, pp. 3305-3314, 2010.

[KAC 10] KAČIANAUSKAS R., MAKNICKAS A., KAČENIAUSKAS A., et al., “Parallel discrete
element simulation of poly-dispersed granular material”, Advances in Engineering
Software, vol. 41, no. 1, pp. 52-63, 2010.

[KAZ 13] KAZERANI T., “Effect of micromechanical parameters of microstructure on
compressive and tensile failure process of rock”, International Journal of Rock Mechanics
and Mining Sciences, vol. 64, pp. 44-55, 2013.

Bibliography 139

[KAZ 10] KAZERANI T., ZHAO J. “Micromechanical parameters in bonded particle method
FOR modelling of brittle material failure”, International Journal for Numerical and
Analytical Methods in Geomechanics, vol. 34, no. 18, pp. 1877-1895, 2010.

[KOM 10] KOMATITSCH D., ERLEBACHER G., GÖDDEKE D., et al., “High-order finite-element
seismic wave propagation modeling with MPI on a large GPU cluster”, Journal of
Computational Physics, vol. 229, pp. 7692-7714, 2010.

[LAU 00] LAUBSCHER D., A Practical Guide Manual on Block Caving, ICS, 2000.

[LI 09] LI L.C., TANG C.A., ZHU W.C., et al., “Numerical analysis of slope stability based on
the gravity increase method”, Computer and Geotechnics, vol. 36, no. 7, pp. 1246-1258,
2009.

[LI 13] LI D., WONG L.N.Y., “The Brazilian disc test for rock mechanics applications: review
and new insights”, Rock Mechanics and Rock Engineering, vol. 46, pp. 269-287, 2013.

[LIS 14] LISJAK A., GRASSELLI G., “A review of discrete modeling techniques for fracturing
processes in discontinuous rock masses”, Journal of Rock Mechanics and Geotechnical
Engineering, vol. 6, no. 4, pp. 301-314, 2014.

[LIU 03] LIU S.H., SUN D.A., WANG Y.S., “Numerical study of soil collapse behavior by
discrete element modelling”, Computers and Geotechnics, vol. 30, no. 5, pp. 399-408,
2003.

[MA 11] MA Z., FENG C., LIU T., et al., “A GPU accelerated continuous-based discrete
element method for elasto dynamics analysis”, Advanced Materials Research, vol. 320,
pp. 329-334, 2011.

[MAK 06] MAKNIČKAS A., KAČENIAUSKAS A., KAČIANAUSKAS R., et al., “Parallel DEM
software for simulation of granular media”, Informatica, vol. 17, no. 2, pp. 207-224, 2006.

[MAR 11] MARKAUSKAS D., KAČENIAUSKAS A., MAKNICKAS A., “Dynamic domain
decomposition applied to Hopper discharge simulation by discrete element method”,
Information Technology and Control, vol. 40, no. 4, pp. 286-292, 2011.

[MCN 93] MCNEARNY R.L., ABEL JR. J.F., “Large-scale two-dimensional block caving
model tests”, International Journal of Rock Mechanics and Mining Sciences, vol. 30,
no. 2, pp. 93-109, 1993.

[MUN 95] MUNJIZA A., OWEN D.R.J., BICANIC N., “A suite element – discrete element
approach to the simulation of rode blasting problems”, Engineering Computations, vol. 12,
pp. 145-174, 1995.

[MUN 04] MUNJIZA A., The Combined Finite-Discrete Element Method, John Wiley & Sons,
2004.

[NIS 11] NISHIURA D., SAKAGUCHI H., “Parallel-vector algorithms for particle simulations on
shared-memory multiprocessors”, Journal of Computational Physics, vol. 230, no. 5,
pp. 1923-1938, 2011.

[OPE 10] OPENMP, OpenMP News, available at http://www.openmp.org, 2010.

140 High Performance Computing and the Discrete Element Model

[ORT 10] ORTEGA L., RUEDA A., “Parallel drainage network computation on CUDA”,
Computers and Geosciences, vol. 36, pp. 171-178, 2010.

[POD 11] PODLICH N.C., ABBO A.J., SLOAN S.W., “Application of GPU computing to upper
bound rigid block analysis”, in KHALILI N., OESER M. (eds), Proceedings of the 13th
International Conference of IACMAG, Melbourne, Australia, pp. 60-65, 2011.

[POT 04] POTYONDY D.O., CUNDALL P.A., “A bonded-particle model for rock”, International
Journal of Rock Mechanics and Mining Sciences, vol. 41, no. 8, pp. 1329-1364, 2004.

[RIC 08] RICK M., CPU Designer Debate Multi-core Future”, EE Times, 2008.

[SAI 10] SAINIO J., “CUDAEASY – a GPU accelerated cosmological lattice program”,
Computer Physics Communications, vol. 181, pp. 906-912, 2010.

[SCH 04] SCHAFER B.C., QUIGLEY S.F., CHAN A.H.C., “Acceleration of the discrete element
method (DEM) on a reconfigurable co-processor”, Computers and Structures, vol. 82,
no. 20-21, pp. 1707-1718, 2004.

[SCH 13] SCHOLTES L., DONZE F.-V., “A DEM model for soft and hard rocks: role of grain
interlocking on strength”, Journal of the Mechanics and Physics of Solids, vol. 61, no. 2,
pp. 352-369, 2013.

[SIM 92] SIMO J.C., LAURSEN T.A., “An augmented Lagrangian treatment of contact problems
involving friction”, Computers and Structures, vol. 42, no. 1, pp. 97-116, 1992.

[STO 10] STONE J.E., HARDY D.J., UFIMTSEV I.S., et al., “GPU-accelerated molecular
modeling coming of age”, Journal of Molecular Graphics and Modelling, vol. 29, pp.
116-125, 2010.

[TAK 09] TAKAHASHI T., HAMADA T., “GPU-accelerated boundary element method for
Helmholtz’ equation in three dimensions”, International Journal for Numerical Methods
in Engineering, vol. 80, no. 10, pp.1295-1321, 2009.

[TBB 10] TBB, Threading Building Blocks (Intel TBB), available at http://www.threading
buildingblocks.org/, 2010.

[TRU 08] TRUEMAN R., CASTRO R., HALIM A., “Study of multiple draw-zone interaction in
block caving mines by means of a large 3D physical model”, International Journal of
Rock Mechanics and Mining Sciences, vol. 45, no. 7, pp. 1044-1051, 2008.

[WAL 09] WALSH S.D.C., SAAR M.O., BAILEY P., et al., “Accelerating geoscience and
engineering system simulations on graphics hardware”, Computers and Geosciences,
vol. 35, no. 12, pp. 2353-2364, 2009.

[WAL 09] WALTHER J.H., SBALZARINI I.F., “Large-scale parallel discrete element simulations
of granular flow”, Engineering Computations, vol. 26, no. 6, pp. 688-697, 2009.

[WAN 13] WANG L.X., LI S.H., ZHANG G.X., et al., “A GPU-based parallel procedure for
nonlinear analysis of complex structures using a coupled FEM/DEM approach”,
Mathematical Problems in Engineering, vol. 2013, Article ID 618980, 2013.

Bibliography 141

[XU 11] XU J., QI H., FANG X., et al., “Quasi-real-time simulation of rotating drum using discrete
element method with parallel GPU computing”, Particuolog, vol. 9, pp. 446-450, 2011.

[YOO 07] YOON J., “Application of experimental design and optimization to PFC model
calibration in uniaxial compression simulation”, International Journal of Rock Mechanics
and Mining Sciences, vol. 44, no. 6, pp. 871-889, 2007.

[ZHA 13a] ZHANG L., QUIGLEY S.F., CHAN A.H.C., “A fast scalable implementation of the
two-dimensional triangular discrete element method on a GPU platform”, Advances in
Engineering Software, vol. 60-61, pp. 70-80, 2013.

[ZHA 13b] ZHAO G.F., FANG J.N., SUN L., et al., “Parallelization of the distinct lattice spring
model”, International Journal for Numerical and Analytical Methods in Geomechanics,
vol. 37, no. 1, pp. 51-74, 2013.

[ZHA 12] ZHAO G.F., KHALILI N., “Graphics processing unit based parallelization of the
distinct lattice spring model”, Computers and Geotechnics, vol. 42, pp. 109-117, 2012.

[ZHA 14] ZHAO G.F., RUSSELL A.R., ZHAO X.B., et al., “Strain rate dependency of uniaxial
tensile strength in Gosford sandstone by the Distinct Lattice Spring Model with X-ray micro
CT”, International Journal of Solids and Structures, vol. 51, no. 7-8, pp. 1587-1600, 2014.

[ZHA 08] ZHAO X.B., ZHAO J., CAI J.G., et al., “UDEC modelling on wave propagation across
fractured rock masses”, Computers and Geotechnics, vol. 35, no. 1, pp. 97-104, 2008.

[ZHE 12] ZHENG J.W., AN X.H., HUANG M.S., “GPU-based parallel algorithm for particle
contact detection and its application in self-compacting concrete flow simulations”,
Computers and Structures, vol. 112, pp. 193-204, 2012.

[ZHU 08] ZHU H.P., ZHOU Z.Y., YANG R.Y., et al., “Discrete particle simulation of particulate
systems: a review of major applications and findings”, Chemical Engineering Science,
vol. 63, no. 23, pp. 5728-5770, 2008.

[ZSA 09] ZSAKI A.M., “Parallel generation of initial element assemblies for two-dimensional
discrete element simulations”, International Journal for Numerical and Analytical
Methods in Geomechanics, vol. 33, no. 3, pp. 377-389, 2009.

Index

A
adaptive damping scheme, 21

B
benchmark examples, 1, 22, 52
50-core CPU, 53
block caving, 77, 79–81, 117
boundary element method, 85
Brazilian disk test, 101–103
Brook, 86
buffer strategy, 9

C
calibration procedure, 111
cluster, 55, 105, 113–115, 117, 136
cohesion, 14, 17, 18, 20, 34, 35, 38,

39, 43, 49, 51, 65, 70, 76, 94, 98,
100, 101, 106, 107, 111, 118, 120,
123, 131

communication, 54–57, 63, 85, 86,
88, 91, 113

compute unified device archiecture
(CUDA), 86

contact detection, 3, 5, 8–13, 16, 18,
19, 21, 23, 36, 37, 44, 48, 52,
 60–62, 74, 77, 83, 90–92

coordinate number, 67

D
DICE2D, 1–4, 7–11, 13, 14, 17, 18,

21–29, 31, 32 34, 36–40, 43, 44,
46, 48–50, 52, 53, 55–60, 62, 63,
69, 74, 77–79, 81–83, 85, 86, 89,
90–92, 105, 111, 113–122, 126,
130, 136

digital image, 74, 75, 130
dimensionless deflection, 68, 70, 73
direct search method, 10, 13
distinct lattice spring model, 86
distributing arrays, 55

F
fragmentation, 32, 49, 52, 77, 80, 83,

117, 118, 136
friction angle, 34, 35, 38, 39, 43, 45,

46, 49, 51, 65, 70, 76, 94, 98, 100,
101, 106, 107, 110, 111, 118, 120,
123, 131

G
GPU card, 85
GPU computer, 55, 86
granular tree, 74
granular-like flow, 76
gravity increase method, 122, 131
GUI, 1

144 High Performance Computing and the Discrete Element Model

H
high performance computing, 53
high-level programming

environment, 113

I
image model subroutine, 74
indirect tensile strength, 101,

104, 105
indirect tension test, 92, 111
inertial cross area, 69

L
lattice Boltzmann method, 85
lattice spring model, 67, 86
Leonardi cluster, 114
local damping coefficient, 22
long-wall mining, 80–82, 92

M
MATLAB®, 1, 2, 53, 55–57, 60–62,

74, 75, 83, 86–89, 91, 111,
113–115, 136

MATLAB®pool, 56
memory coalescing, 85
microcomputer, 53
model decomposition, 85, 113
moderate-sized cluster, 113
modular concept, 113
Mohr–Coulomb model, 3, 14, 16–18,

34, 101
molecular dynamics, 85
moving particle semi-implicit (MPS)

method, 85
multi-core implementation, 53, 55
multi-core PC, 53–56,

60, 83
multi-core processor, 53, 54

N, P
Newton’s second law, 5, 23, 107

P2P contact, 10, 13–18, 20, 34, 36,
37, 60–62

Parallel Computing Toolbox, 53, 55,
83, 86, 111, 113, 115

parallel drainage network
computation, 86

parallel virtual machine, 113
parallelization, 52–58, 60–63, 74, 85,

91, 111
parfor, 55–57, 60–62, 90
particle-to-particle (P2P)

constitutive model, 5
performance analysis, 53, 57, 59
peripheral component

interconnect (PCI), 86
personal computer (PC), 53
personal high performance

computing (PHPC), 53
physical cores, 56
Poisson’s limitation, 67
Poisson’s ratio, 64–68, 71, 74, 83,

105
portable batch system (PBS), 114
pre-processor profile analysis, 58, 60
PuTTY, 114

Q
quad-core processor, 53, 54
quasi-static, 21, 29, 32, 65, 70

R
realistic failure patterns, 136
rock bolt, 126–129
rock boulder, 48
rock cutting, 118, 120, 121, 136

S
safety factor, 122
serial implementation, 1, 52
simplified grid cell method, 8, 10
single program multiple

data (SPMD), 55

Index 145

slope stability analysis, 122
strength reduction method, 122
supercomputer, 53

T
temporary array, 62
tree collapse, 76, 79, 117
triangle-packed model, 98
triaxial compressive test, 107

U
underground cavern, 130, 131, 133
uniaxial compression test, 57, 58, 62,

64, 65, 68, 71, 74, 90, 105, 115,
uniaxial tension test, 92–94, 96, 97

W
W2P contact, 13, 18–21, 39, 43, 52
wall-to-particle, (W2P) model, 5
worker, 56, 60, 63, 74, 77, 79, 91
worker-client mode, 56

Z
zigzag-type fracture, 95

